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 Flutter Analysis Based on Component Modal Synthesis for 
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Structural nonlinearities on an aeroelastic system can significantly take influence in the 

dynamic responses and cause complex phenomena like the limit-cycle oscillations (LCOs). 

Flutter analysis for the nonlinear system thus needs special consideration for nonlinearities. 

In this paper, a wing-aileron system with freeplay nonlinearity and its finit-element model 

were constructed. Numerical investigations based on component modal synthesis (CMS) and 

harmonic balance (HB) method were implemented for the nonlinear flutter analysis. A wind 

tunnel experiment was carried out to validate the numerical results. The results derived by 

HB method agreed with experimental data on the linear flutter condition, LCO onset airspeed 

and LCO dominat frequency. The numerical diagram of LCO amplitude increasing with 

airspeed was also validated by experimental data. However, the experiments found that when 

the oscillation amplitude of wing tip was beyond the safety toleration, the LCO of aileron was 

still stable and held an acceptable amplitude both numerically and experimentally, so as for 

determination of accurate nonlinear flutter boundary, LCOs on all of the degree of freedoms 

(DOFs) should be considered. The DOFs with nonlinearities were not necessarily the most 

dangerous one among the nonlinear system. 

Nomenclature 

u  = structural nodal displacement vector. 

v  = relative displacement in the nonlinear assembly degrees of freedom (dof) 

Φ  = structural modal displacement matrix. 

q  = general coordinates with respect to Φ . 

Ψ  = inertia-relief attached modes derived by component systhesis procedure. 

J
f  = internal force vector, which also represents the general coordinates with respect to Ψ . 

NL
f   = nonlinear function with respect to v . 

H  = complementary modal displacement matrix  H Φ Ψ . 

,M K  = structural nodal mass and stiffness for each component (or substructures). 

, ,M C K = general modal mass, damping and stiffness matrix for an assembled system. 

,
qq

Q Q  = general modal force matrix for a component and for an assembled system. 

   = flow density (kg/m3). 

V   = flow velocity, i.e. airspeed (m/s). 

d   = size of freeplay (rad). 
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0
,

e
k k   = underlying linear aileron rotational stiffness and effective stiffness (N∙m/rad). 

g   = artificial damping used in p-k algorithm for flutter. 

,    = aileron rotation angle (rad), and nominal aileron rotation angle d  . 

,U U    = amplitude of  , and amplitude of  , i.e. U U d  . 

   = harmonic frequency in the harmonic balance method (Hz). 

Subscripts 

W  = structural component label, i.e. "wing" 

A  = structural component label, i.e. "aileron" 

r  = rigid structural modes 

e  = elastic structural modes determined by finite-element method 

h  = high-order elastic modes neglected for efficiency  

J  = structural grids that connect two structural components 

L  = subset of J representing a linear connection 

NL  = subset of J representing a nonlinear connection 

I. Introduction 

lutter and limit-cycle oscillations (LCOs) are similar to some extent as both of them result from the interaction of 

structural dynamics, unsteady aerodynamic loads and inertia forces, but they are essentially different. Flutter is a 

dynamic instability phenomenon when a linear system exhibits harmonic oscillations, while LCOs can be either 

stable or unstable, occurs at pre- or postflutter condition, and yield amplitude-bounded and periodic motion [1]. LCOs 

can result in complex phenomena [2-4], affect the performance of the aircraft and even cause sever problmes. 

Freeplay is a typical and significant source of structural nonlinearity. The research on nonlinear flutter analysis 

and, in particular, on control-surface freeplay is motivated by significant number of literatures. Control-surface 

freeplay can be essentially classified into two types. The first functions independently, such as all-moving control 

surfaces or canards, in which freeplay exists in the pitching motion of the root of control surface. The other attaches 

to a wing and the freeplay usually exists in the rotational motion of the control surfaces.  

As for the later type of control surface, take a wing-aileron system for an example, many researches have found 

complex LCO phenomena. Kholodar [5] calculated the flight envelopes, and found three stable LCOs with distinct 

frequencies occurred within the flutter onset condition. Carrese et al. [6] studied a wing with a leading-edge flap and 

a trailing-edge aileron. Roizner and Karpel [1] examined an aircraft with freeplay in an elevator attached to a horizontal 

tail, and the results presented only one LCO with a supercritical Hopf bifurcation, whose amplitude increased from 

zero and the dominant frequency increased continuously. 

Flutter analysis determines the airspeed region in which an aircraft can keep dynamic stability and fly with safety. 

Many mature algorithms like p-k method [7, 8] provide a efficient path to the linear flutter analysis in the frequency 

domain. However, when structural nonlinearities bring LCOs to the aircraft, linear flutter analysis for an aeroelastic 

system can be inaccurate compared to the experiment. The accurate calculation of LCO can be very time-consuming, 

especially considered high-order elastic modal of component [9], preload of control system [10] and the variation of 

underlying linear stiffness of the freeplay actuator[11]. Component modal synthesis provide another way to address 

the nonlinear flutter anlaysis. In this paper, a wing-aileron model is constructed both numerically and physically. This 

aeroelastic system is devided into two linear components, the wing and the aileron, and assembled together with a 

nonlinear stiffness element. Numerical investigation by first-order harmonic balance approach is implemented and a 

wind tunnel test is carried out. The camparison between numerical results and experimental results uncovered the 

intreseting phenomena of flutter and LCOs in nonlinear system, and validate the effectiveness of the nonlinear flutter 

analyzing procedure in this paper. 

This paper is organized as follows. Section II.A introduces the wing-aileron model and the nonlinear actuator. 

Sections II.B and II.C present the structural and aerodynamic modeling methods based on component synthesis. 
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Section II.D introduces the procedure of nonlinear flutter anlaysis. Section III derives the numerical results which is  

compared with the experimental results. 

II. Aeroelastic Model and Numerical Methods 

A. Experimental and Analytical Models 

An rectangular wing with an outboard trailing-edge aileron was designed and produced (see Fig. 1). It has a span 

of 1.40 m and the length of the wing section is 0.40 m. Seven ribs are distributed evenly along the aluminous spar of 

the wing. The root of the wing is oriented along the direction of flow (x-axis), and the ribs are perpendicular to the 

spars. The mass distribution of the wing-aileron is listed in the Table 1.  

 

Fig. 1 Experimental model: a wing-aileron aeroelastic system 

 

Fig. 2 Finit element model of the experimental model 

Table 1 Mass distribution of the wing-aileron model 

Component Mass, g Component Mass, g 

Wing spar 1810 Wing bars and skin 3049 

Aileron 140 Aileron supporting beams 54 

Acuator and supporting parts 156 Angle Meter and supporting parts 43 

 

The aileron is mounted by two linear hinges and a nonlinear actuator that can generate freeplay. The nonlinear 

actuator is consist of a connector with a stop block, a rocker with a slot, and some other parts (see Fig. 3). Three 

rockers with different size of slots are produced, which can provided three different and reliable size of freeplay: 1.13°, 

2.50° and 4.00°. Additionally, a linear actuator that combined the rocker and connector into one part is also produced 

to provided a linear cases. In totle, four cases labled D0, D1, D2 and D4 represent the case without freeplay and with 

1.13°, 2.50° and 4.00° degree. In the wind tunnel experiments, four cases were carried out as the sequence of D0 - D4 

- D2 - D1. The angular meter was fell of and damaged in the last one, the case "D1". There were also some acceleration 

meters could be used for all of the cases, however, only signal captured by angular meter is used to compare with 

numerical results, so we apologized that only three cases, D0, D2 and D4, were adopted in this paper. 
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There is also an aileron rotating leaf spring produced by aluminum in the linear or nonlinear actuator. the sectional 

size of the leaf spring is 2.0 mm by 2.0 mm. The leaf spring provides a specific rotating stiffness of the aileron. 

 

Fig. 3 Nonlinear actuator that generate specific size of rotating freeplay 

B. Nonlinear Aeroelastic Modelling Based on the Componet Modal Synthesis  

Because concentrated structural nonlinearities usually arise in a few grids in the FEM, one approach for structural 

modeling is to employ the standard finite-element method to each linear component and add the minimal orders to 

account for the effect of the nonlinearities [12-14]. The nodal displacement vectors u  can be derived by the 

summation of the normal modes: 

 
W rW rW eW eW hW hW

A rA rA eA eA hA hA

  


  

u Φ q Φ q Φ q

u Φ q Φ q Φ q
  (1) 

where Φ and q represent the modal displacement matrices and general coordinates, respectively. The subscripts r, e 

and h denote rigid modes, low-order elastic modes, and high-order elastic modes that are neglected for efficiency 

reasons. Subscripts W and A represent the wing and aileron components, respectively. As the wing is clamped at the 

root, rWΦ is a zero matrix. 

A freeplay nonlinearity in the rotation motion of the aileron can be identified as a nonlinear function between 

the restoring torque and deflection of the aileron, as shown inFig. 4. The attachment modes Ψ for each component 

are derived by Eq. (3). 

 h h JΦ q Ψf   (2) 

     11

e e e e

T T T


 Ψ Γ K Γ Φ Φ KΦ Φ F   (3) 

where Jf is the internal force vector. K  is the subset of the nodal stiffness matrix K determined by eliminating the 

DOFs in which the displacements are set to zero due to the constraint conditions (for a component without rigid modes) 

or the selection of the inertial reference frame (for a component with rigid modes). F is the unit internal force matrix, 

and Γ  is the inertial-balanced matrix: 
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 r r r

r

,

,

T  
 



I MΦ Φ Φ 0
Γ

I Φ 0
  (4) 

The complementary modal matrix r e[ ]H Φ Φ Ψ  and the corresponding general coordinates 
r k J[ ]T T T Tp q q f  can be 

defined for each component. Thus, Eq. (1) can be rewritten as follows: 

 
W W W

A A A






u H p

u H p
  (5) 

An assembly process can be implemented by the compatibility conditions for the displacements and internal forces. 

 
LW LA

NLW NLA




 

u u

u u v
  (6) 

 
LW LA

NLW NLA

 


 

f f

f f
  (7) 

The subscripts L and NL represent the linear and nonlinear DOFs, respectively, between the wing and aileron. v  is a 

relative displacement in the nonlinear assembly DOFs. Thus, the modal reduction equation can be written as follows: 

 
c

AB

 
  

 

q
p T

v
  (8) 

where T is the assembly matrix; ABp is the combination of two complementary general coordinates, namely, 

rW kW JW rA kA JA[ ]T T T T T T T
q q f q q f ; and cq consists of the elastic modes of each component, namely, 

rW kW rA kA[ ]T T T T T
q q q q . The 

complete aeroelastic equation of the wing-aileron model can be derived [11] as follows: 

 
c c c c2

NL

1

( ) 2
qq qq qq qqV
         

            
         

q q q 0 q
M C K Q

f vv v v v
  (9) 

where qqM , qqC and qqK are the modal mass, damping, and stiffness matrices of the wing-aileron model, respectively. 

( )NLf v is the nonlinear force vector.   and V  are the flow density and velocity, respectively. 
qqQ  is the modal 

aerodynamic force matrix. In the wing-aileron model proposed in this paper, v denotes the rotation angle of the aileron 

 , and NL ( )f v  represents the freeplay restoring torque of the aileron A ( )T  : 

 

 

 

0

A

0

( ) 0

k d d

T d d

k d d

 

 

 

 


   
   

  (10) 

where d  is the degree of freeplay, and 0k  is the underlying linear stiffness, which must be validated by a ground 

vibration test (GVT). The freeplay nonlinearity is depicted in Fig. 4. 

C. Aerodynamic Modelling 

An unsteady doublet-lattice method is employed to model the flow about the wing-aileron model. The 

aerodynamic lattices include a 19 × 7 grid for the inside wing and a 7 × 5 grid for the outside wing. The aileron 

occupies a 7 × 2 grid located outboard of the wing and aft along the chordwise direction. 
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Fig. 4 The freeplay function Fig. 5 Aerodynamic grids of the wing-aileron model 

The modal aerodynamic force matrix has the following formulation [11]: 

 W

A

( )

T

T

qq gqT
k

 
   

 

H
Q T Q

H
  (11) 

where k  is the reduced frequency, and 
gqQ reflects the forces on each structural grid with respect to the extended 

complementary modal motion: 
W A[ ]H H . 

WH  adds the nodes of the aileron to WH , and 
AH adds the nodes of the 

wing to 
AH . Finally, the complete aeroelastic equation can be written as follows: 

 2

A

1
( )

( ) 2

c c c c

qq qq qq qqV k
T


  

        
           

       

q q q q0
M C K Q   (12) 

D. Harmonic Balance Method and Flutter Analysis in Frequency domain 

as Eq. (12) describes the freeplay using an explicit expression, the standard HB method can be utilized in a 

straightforward manner. The first-order HB (1-HB) method, also known as the describing function approach, 

constructs a nonlinear effective stiffness 
effk ( see Table 2 in Ref. [15]): 

 

2

eff 0

2 2
1 arcsin 1

d d d
k k

U U U   

 
        

  
 

  (13) 

where d is the degree of freeplay, and U is the amplitude of the aileron rotation angle. Then, the amplitude of the 

aileron restoring torque can be expressed as follows: 

 T effU k U    (14) 

Accordingly, Eq. (12) can be analyzed using the following equation, which is also known as the K method flutter 

equation: 

   c2 2

eff

1
1 ( )

( ) 02
qq qq qq qqi ig V k

k U U 

  
      
            

     

U0 0 0
M C K Q

0
  (15) 

where i  is the unit imaginary number; g  is the artificial damping; U  is the nominal amplitude of the aileron 

rotational angle, U U d  ; and cU is the amplitude of cq . 

III. Numerical Results and Experimental Validation 

A. Underlying Linear Stiffness Dtermenation and Linear flutter analysis. 

A series of ground vibration tests (GVTs) were implemented to the linear system "D0", so that the stiffness of the 

leaf spring (see Fig. 4) was determined to be 2.9 N.m/rad. Then a structural dynamic analysis based on the method 

mentioned in the Section II was carried out, and the results were compaired with linear analysis using MSC. 

NASTRAN. In the CMS algorithm, the first 5 orders of the wing and the first 6 orders of the aileron are used, together 

deflection of aileron
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with one nonlinear dof (rotational angle of the aileron), the final order of the assembled system if 12 = 5+6+1. Table 

1 lists the first 5 modal frequencies of the assembled system. 

A linear flutter analysis for the assembled system was then carried out. The results showed that the linear flutter 

of the system is 49.92 m/s, and the flutter frequency is 13.89 Hz. 

Table 2 Structural analysis of the numerical model 

FEM for linear wing-

aileron model, Hz 

FEM for component of 

the wing (clamped at 

root), Hz 

FEM for component of 

the aileron (free-free 

bounded), Hz 

FEM for assembled wing-

aileron model using CMS 

method. Hz 

1.89 1.95 first six rigid modes: 0.00  1.89 

9.36 9.67 78.54 9.34 

12.07 12.14 … 12.07 

12.71 17.81  12.71 

19.73 33.75  19.73 

 

Table 3 Structural modal analysis for wing component 

   

1. first-order bending 

1.95 Hz 

2. first-order bending (in plane) 

9.67 Hz 

3. second-order bending 

12.14 Hz 

 

 

 

4. first-order torsion 

17.81 Hz 

5. third-order bending 

33.75 Hz 

6. second-order torsion 

51.29 Hz 

B. Nonlinear flutter analysis and experimental validation 

In this section, the nonlinear aeroelastic equation is solved in the frequency domain via the method mentioned in 

the Section I. The modal damping matrix is set to zero matrix. The atmospheric density is 1.225 kg/m3, and the 

reference length is 0.40 m. 

In Fig. 6 and Fig. 7, the numerical results (label CMS+HB1) of the oscillation of aileron rotational motion uncover 

a harmonic oscillation that occurs at the airspeed of 32.14 m/s with the frequency of 15.5 Hz. Since the amplitude of 

this oscillation varys only within a very limited region as the airspeed increased, it can be considered as a sign of 

stable LCO. When the airspeed keep increasing, the amplitude frequency of LCO increases slowly at first, and booms 

dramaticly when the airspeed is over around 47.0 m/s, and the frequency increases alightly at first, and then drop 

quickly until the linear flutter frequency 13.89 Hz.  

Wind tunnel experiements uncover more details of this LCO. As shown in Fig. 8 and Fig. 9, when the airspeed 

hold on 33.0 m/s, only one dominant frequency around 15.0 Hz is found, and the phase diagram of aileron rotational 

angle consists of numerious random points. When the airspeed increased to 33.5 m/s, however, three dominant 

frequencies occurs (around 15.0 Hz, 30.0 Hz, and 45.0 Hz) and the diagram present a circle, which indicate that the 



 

 

8 

signal captured in angular meter is periodical. As the airspeed continue increasing to 35.3 m/s, the three dominant 

frequencies and the shape of the circle in phase diagram are almost unchangless.  

The weighted average of the three dominant frequencies is about 1 Hz higher than the numerical results (Fig. 7) 

since HB method cannot account for the high order haromincs. The diagram of oscillation amplitude vs airspeed from 

experimental data present a good validation of numerical results (Fig. 6). The experimental data in Fig. 6 and Fig. 7 

stopped at airspeed of 35.3 m/s for 4.0° freeplay and 33.8 m/s for 2.5° freeplay, because the amplitude of wing tip 

motion was so large that we had to stop the wind tunnel for the safety of the model. The aileron LCO were still stable 

at that two experimental data point. 

Table 4 present the value of flutter or LCO onset airspeed and average dominat frequency, on which experimental 

data basically agree with the numerical results. 

 

 

Fig. 6 Nonlinear flutter results: airspeed vs relative amplitude of aileron 
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Fig. 7 Nonlinear flutter results (V-  plot) 

 

Fig. 8 FFT of aileron rotating signal from wind tunnel data, 2.5° freeplay 
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Fig. 9 phase diagram of aileron rotation angle from wind tunnel data, 2.5° freeplay 

Table 4 Numerical results vs experimental data for the nonlinear flutter and LCOs 

size of 

freeplay 

oscillation onset airspeed, m/s oscillation type 
average harmonic frequency of the 

oscialltion at its onset airspeed (Hz) 

numerical test numerical test numerical test 

Linear 49.92 > 45.5 m/s flutter flutter 13.89 13.55 

2.50° 32.14 33.5 m/s LCO LCO 15.50 15.44 

4.00° 32.14 33.0 m/s LCO LCO 15.50 15.69 
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Conclusion 

1) This paper present the aeroelastic modelling procedure for a wing-aileron system with a freeplay on aileron 

rotational motion. The modelling method is based on component modal synthesis and has the following advantages: 

a) This method can be utilized in aeroelastic system with any number of structural nonliearities, and the 

nonlinearities can be expressed explitictly in the aeroelastic equation. 

b) Unsteady aerodynamic loads are derived only by linear components' rigid modes, some low-order elastic modes 

and inertia-relif attached modes, which are indepent with structural nonlinearities. As a result, classic codes for 

flutter analysis (e.g. p-k method) can be implemented without re-calculating aerodynamic loads when the 

effective stiffness of the structural nonlinearities change, and nonlinear flutter analysis based on HB method 

can be carried out with efficiency. 

2) Numerical results uncover the basic characteristics of LCO and agree with the experimental results. 

a) For linear system, flutter occure at the airspeed over 45.5 m/s (experimentally), or more specificly, at around 

50.0 m/s (numerically). The flutter frequency derived by experiment and calculation are 13.55 Hz and 13.89 

Hz, respectly. 

b) Both the numerical results and experimental data show that LCO occurs at 32.0 m/s ~ 33.5 m/s, and the dominant 

frequency of LCO is around 15.5 Hz.  

c) The plot of LCO amplitude increasing with airspeed derived by numerical results agree with the experimental 

data when the airspeed lower than 36.0 m/s. After this airspeed, the experimental data in Fig. 6 and Fig. 7 

stopped because the amplitude of wing tip motion was so large that we had to stop the wind tunnel for the 

safety of the model. The aileron LCO were still stable at that two experimental data point. So, if we want to 

use this procedure to determine the nonlinear flutter boundary, amplitude of LCO for the wing tip point should 

be considered as well, rather than only considered the aileron rotational motion. 
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