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ESAT Three-Axis ADCS Implementation  

 K.S. Olfe*, MSc in Aeronautical Engineering  
Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, 

Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain  

The general purpose of this work is to develop an optimal three-axis Attitude 
Determination and Control Subsystem (ADCS) for the satellite ESAT. ESAT is an 
educational nanosatellite based on the CubeSat standard. This work includes: sensors signal 
conditioning, 4 implementations of attitude determination algorithms, a Proportional 
Integrative Derivative (PID) attitude controller, a detumbling controller and the 
experimental results obtained in low-cost self-designed test-bed. The results obtained show 
the functional status of the 3-axis ADCS of ESAT which is now an adequate tool to research 
in the field of satellites attitude control. 

I. Introduction 
ESAT is an educational satellite designed for hands-on learning for all education levels. It is a 10x10x10cm 

nanosatellite based on the successful CubeSat standard [1], weighing less than 1kg and having the following typical 
spacecraft subsystems: Electrical Power, Command and Data Handling, 1-axis Attitude Determination and Control 
and structure [2]. So, the main purpose of this work is to migrate the ADCS of ESAT from 1-axis controlled to 3-
axis controlled. It means that new sensors and actuators have to be used, new determination algorithms and control 
laws have to be implemented and new telemetry and commands packages have to be send. 

The development of a 3-axis ADCS for the educational satellite ESAT can be seen from a general control design 
point of view as it is represented in Fig. 1. The controlled plant is the ESAT, its state vector is the controlled variable 
and includes its orientation as a rigid solid in space and also its angular velocity. To know this vector, there are 
necessary some measurements which come from on board sensors. These measurements are combined with an 
attitude determination algorithm which provides an estimation of the current state of the plant. From ground 

                                                           
*kolfe@eusoc.upm.es 

ESAT plant

Sensor 
measurements

Attitude 
determination

Actual state vector

•Angular velocity
•Nadir vector
•Magnetic field vector

Control 
laws

Estimated state vector
(quaternion, angular 
velocity)

magnetic   
torques

Commanded
attitude

Actuators

Ground
segment

Magntorquers 
duty cycle

 
Figure 1. Project Schema 



 
American Institute of Aeronautics and Astronautics 

 
 

2 

segment, a reference state is commanded and the control laws feed the actuators to change the current state of ESAT 
to desired state (the reference). 

 
During the develop of the 3-axis ADCS for ESAT, a new prototype was used (see Fig. 2) to test both software 

and hardware described in this document. Tests mentioned in this documents and experimental results exposed were 
obtained with this prototype. This prototype does not include 
solar panels, sun sensors and the reaction wheel. It is a magnetic 
control based concept where a new air core magnetorquer was 
manufactured and included to generated a dipolar moment 
component in Z-axis. 

 

II. Sensors measurements 
ESAT is equipped with three-axis gyroscope, accelerometer 

and magnetometer. All of them are used to determine the 
attitude and, for that reason, they need to be treated as follows: 

Gyroscope signals are filtered with a Digital Low Pass Filter 
(DLPF) to reduce the high-frequency noise. It is necessary not 
only to integrate its measurements but also to use this signal as 
the derivative input of an attitude PID controller.  

Since the 3-axis controlled ESAT prototype is not equipped 
with suns sensors (which determines 2 Degrees of Freedom, 
DoF), the magnetometer, alone (2 DoF), is unable to get a 
complete attitude determination (at least 3 DoF). The use of 
accelerometer as nadir sensor resolves this uncertainty without 
loss of generality. 

III. Attitude Determination 
The most common way to represent the attitude of a rigid body is a set of three Euler angles (see Fig. 3). The 

main disadvantages of Euler angles are that they have singularities and a higher computational cost (due to the 
trigonometric functions). Any finite rotation may be also achieved by a single rotation about an appropriately chosen 
axis. It is therefore possible to parameterize the attitude of a rigid body with an angle δ  and a unit vector υ  [3].  

X Y

Z

 
Figure 2. Three-axis controlled ESAT 
prototype with the body frame reference. 

 
Figure 3. Euler angles and axis-angle representation [3] 
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ESAT attitude is parametrized in unit quaternions [4,5] whose relation with the axis-angle representation is 
described in Eq. (1). 
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Three different attitude determination algorithms have been implemented in ESAT: 
• TRIAD. 
• Gyroscope measurements integration. 
• Q-method (implemented in two ways). 

As it was explained in section II, to completely determine the attitude, the knowledge of the values of at least 
two vectors both in body frame (see Fig. 2) and in inertial frame is needed because one vector only determine 2 DoF 
and it is necessary to know 3. With 2 vector, there are 4 DoF restricted and owing to the sensors noise, they will not 
be consistent (the problem has only 3 DoF so, if there are 4, one should be dependent of the others). TRIAD method 
solves this inconsistency in a deterministic way, i.e. the same input of the measurements of two vectors generates the 
same output. Thus, this method does not need any initial attitude approach and it can be used to initialize other 
methods and to compare the results obtained with other algorithms. In ESAT, this method has been implemented 
with the measurements of the accelerometer and the magnetometer (in this order). 

There are some mission phases where there are no readings from two different vectors, e.g., a mission using a 
sun sensor during an eclipse phase. To simulate these cases, an algorithm based on the integration of gyroscopes has 
been also implemented. This implementation allows to deal with the fact that integrating a Gaussian noise during a 
large amount of time can produce an error in the actual value. Even if the noise has any error in the mean, i.e. the 
measurements are most probably in the actual value (without any offset error), the final value obtained by the 
integration of gyroscope signal could be very far to the actual. This is a real problem for satellites and thus, the 
quaternion value has to be updated with other method when it is possible. 

Q-method holds on the definition of a cost function to be minimized. This function (J) has the following 
structure: 
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Where N is the number of vectors used in the method, Wi are the vectors measured in body frame (see Fig. 2), Vi 
are the same vectors in inertial frame, R is the rotation matrix and ia  are weight factors. The objective is to found a 
rotation matrix which minimizes this function, i.e. the attitude which minimizes the squares residuals between the on 
board measured values and the calculated inertial values. So this method allows to include as many measurements as 
desired, so it is possible to take into account all the sensors. To compare the attitude obtained with this method with 
the one obtained with TRIAD, an implementation with only the accelerometer and the magnetometer has been also 
performed. By writing this problem in terms of quaternios, we derive the following eigenvalue problem: 

 qqK  λ=  (3) 

where the matrix K depends on the vectors in the inertial and body frames and the weigtht factors. Since only the 
largest eigenvalue is required, when the matrix is well conditioned, we solve Eq. (3) by means of the power method 
described below. 
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A. Power Method 
The power method [6] is a very simply algorithm to obtained the largest eigenvalue (and eigenvector). It consists 

on recursively multiplying an initial approach to the eigenvector by the matrix (in this case an initial quaternion by 
the matrix K). To avoid numerical problems in each step the quaternion is normalize:  

 
1

1

−

−=
i

i
i q

q
Kq






 (4) 

This step is repeated until the quaternion accomplishes a stop condition which will condition the error of the 
method. 

B. Convergence of power method  
The output of the power method (without normalizing the quaternion) in ith step is: 

 01 qKqKq i
ii



== −  (5) 

Where 0q is the initial value which begins the iteration. If ix  (i = 1; 2; 3; 4) are the eigenvectors of the matrix K, 
the initial value can be expressed as a lineal combination of this vectors: 

 443322110 xcxcxcxcq 

+++=  (6) 

Where ci (i = 1; 2; 3; 4) are constant values. Then the output of the ith iteration can be expressed as: 
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Where jλ  (j = 1; 2; 3; 4) are the eigenvalues ordering such that: 

 4321 λλλλ >>>  (8) 

For this reason the coefficients of jx (j = 2; 3; 4) converge to zero as i →∞. Note that if 1λ > 1 the vector iq  

increases its norm in each iteration. In the opposite, if 1λ  < 1, 
i

q decreases. To avoid numerical problems, a 

normalization of the vector iq is performed in each iteration.  

The problem appears when there is a jλ such that 1λλ =j . 

C. Modified algorithm 
To solve this convergence problem, a modification in the original algorithm (expressed in Eq. (4)) has been 

implemented. To do it, it must be taken into account that the eigenvalues of the matrix K of the q-method 
implemented in ESAT accomplish the following relationships: 
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This is why, in our case, if the iteration index is even, the 2ith iteration of the vector q  can be approached to: 
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If the iteration index is odd, the (2i+1)th step of the power method returns: 
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In fact, this happens when the q-method implemented with magnetometer and accelerometer measurements is 
solved in ESAT via the power method. This behavior is shown in Fig. 4 

As it is shown in Fig. 4, the quaternion do not 
converge because of the properties of the 
eigenvalues of the matrix K of the q-method. To 
solve this problem, when the quaternion does not 
converge, a new approach to the optimal solution 
has been developed.  It can be obtained with the 
sum of the Eq. (10) and Eq. (11): 
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As the other two eigenvalues are smaller than 
the first (Eq. (9)), if Eq. (12) is applied when this 
behavior is detected, the modified power method 
converges to the exact solution. The algorithm 
that performs this detection and that was finally 
implemented in ESAT is shown in Fig. 5. The 
converge criteria is the Euclidean norm of the 
vector difference between two consecutive 

iterations. When this value is smaller than a defined tolerance (tol 1) the quaternion is considered to have converged, 
so, this is the output of the power method and the algorithm finishes. When the vector difference is the same with 
the opposite sign (oscillating behavior), the norm difference is closed to zero (smaller than another tolerance, tol2) 
and this is the manner of evaluating the converge. 
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Figure 4. Quaternion value evolution in each iteration of 
power method (experimental result) 
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D. Comparison between q-method and 
TRIAD method 

The last implementation of q-method 
can be compared with the determination 
obtained with TRIAD method. To do it, a 
test consisting on a four radian rotation 
about z-axis (see Fig. 2) was performed. 
The determination obtained in this test 
with the q-method and the TRIAD method 
(both with accelerometer and 
magnetometer inputs) is shown in Fig. 6. 

It is clear that, as TRIAD is a 
deterministic method, the same input 
returns the same output, nevertheless the 
q-method output depends on the first 
approach of the solution ( 0q ). In this test, 
this initial approach is the last attitude 
known (the one obtained in the previous 
on board processor cycle). 

The numerical values are not the same but both methods determine attitude correctly. This is due to the fact that 
the quaternion q  expresses the same attitude as q− (a rotation δ  around a vector υ  is the same as a rotation 
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Figure 5. Modified power method final implementation 
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Figure 6. Quaternions obtained on board ESAT with TRIAD 
method (solid lines) and q-method (dash dot lines) 
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δ− around a vector υ− ). The attitude quaternion is usually defined with 04 >q but the implemented control 
algorithm does not depend on neither the sign of the current attitude quaternion nor the sign the commanded 
quaternion (the target attitude). 

It has been empirically probed that this algorithm is very fast, allowing the implementation of the q-method with 
its eigenvector problem but avoiding the necessity of solving a linear system at each step, which is a common 
requisite of many eigenvalues algorithms (all which are based in the inverse method). For this reason, this 
algorithm is able to solving the q-method problem without assuming any simplification (as QUEST method do) even 
in limited processors). 

IV. Actuators 
ESAT use three magnetorquers to control its attitude. A magnetorquer actuating in a magnetic field generates a 

torque according to: 

 BmT






×=  (13) 

Where T is the torque generated by the magnetorquer, B is the external magnetic field and m is the magnetic 
dipole moment generated by the magnetorquer. The control variable is m and it depends on: 

 nIAGm =


 (14) 

Where n is the number of coils, I is the electrical current trespassing trough the wire, A is the area of the coils 
and G is a factor which represent the contribution of the ferromagnetic nucleus of the magnetorquer (in case it exits, 
if the magnetorquer does not have any nucleus this factor is equal to 1). G only depends on the geometry and on the 
magnetic permeability of the nucleus. For this reason, control m is the same as control I. To do that, magnetorquers 
in ESAT are connected to the power bus via H-bridges which are able to produce a PWM output. 

V. Control laws 
To control the attitude of ESAT, a 3D PID controller has been implemented [7,8]. Next, the control laws are 

described. 

A. Error definition 
First of all, a measurement of the difference between the current attitude and the target attitude is necessary (see 

Fig. 1). The error is a vector in the axis where a torque acting around it can turn the satellite from its current attitude 
to the target attitude. The magnitude of the error vectors depends on the distance between the two attitudes. 

The quaternion error three-dimensional vector, εq ,  is the vector part of the four-dimensional quaternion error, 

eq , multiplied by the sign of the real part of it: 

 eq
q
qq

4

4=ε


 (15) 

The quaternion error, eq , is computed as the quaternion multiplication (⊗ ) of the inverse of the current 

quaternion, q , and the commanded quaternion, Tq  (target) [9,10]: 

 Te qqq 

⊗= −1  (16) 

Quaternion multiplication, inverse and conjugate are defined as: 
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All of these operations avoid problems with quaternion signs because if the absolute value of the error angle is 
lower than 180º, the fourth element of the quaternion error is positive. So, sign changes performed in Eq. (15), 
assure that the control signal acts in the direction of the shortest way between the target quaternion and the current 
quaternion. This means that the control law will function correctly independently of the sign of the estimated 
quaternion and the commanded quaternion. The only quaternion which must have its real part positive defined is the 
error quaternion. 

B. PID control law 
Due to the wide use of PID controllers and keeping in mind the educational purpose of ESAT, the pointing 

control law implemented is a 3-axis PID controller. Such a controller is composed by three contributions: 
proportional, derivative and integral.  

Looking at Eq. (13), it is not possible to generate a torque parallel to the external magnetic field which is the one 
generate by the magnetic field simulator included in ESAT ground equipment. As the control variable is m, it has no 
sense to produce a magnetic dipole moment with a component in the external magnetic axis because it will consume 
power without generating any torque. In order to get only a contribution in the plane perpendicular to the external 
magnetic field B



, all the terms of the PID controller are multiplied in a vector product by the external magnetic 
field versor. So, the implemented magnetic PID controller is: 

 ( ) ( ) ( )∫×+×+×= dtqBKBKqBKm IDp εε ω 









 (19) 

The derivative term of the PID is 
directly implemented with angular 
velocity (measured with the 
gyroscopes). As it has been explained, 
these signals are filtered so, it is not 
necessary to include another filter stage 
in the controller. With respect to the 
integral term, an anti-windup step has 
been included. The objective of this step 
is to prevent the processor from 
commanding the magnetorquers above 
the 100% duty cycle and also to 
maintain the dipolar moment 
perpendicular to the external magnetic 
field. This last requirement avoids power 
consumption in the magnetorquers 
without producing torques. The anti-
windup checks if there is one component 
with a duty cycle larger than 100%. 
Then, all the components are scaled in 
order to get the largest component equal 
to 100%. Anti-Windup algorithm is 
represented in Fig. 7†. 

                                                           
† Note than C++ zero-based indexes are used in this algorithm.  
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Figure 7. Anti-Windup algorithm 
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C. Detumbling 
Detumbling consists of damping the angular velocity of 

the satellite to zero. “When the spacecraft is deployed from the 
launch vehicle, this process may impart a large angular 
momentum to the spacecraft, causing the spacecraft to tumble. 
For the spacecraft to perform meaningful pointing tasks, it 
must first stop this tumbling motion” [9]. A typical algorithm 
for LEO orbits is the B-dot control law. This consists on the 
application of a magnetic dipole moment in the opposite 
direction of the derivative of the magnetic field vector: 

 bBdot Bkm 





−=  (20) 

As the magnetometer is on board, the measurement of the 
magnetic field vector is expressed in the body frame. Coriolis 
theorem relates the derivative of the vector: 

 BB
dt
BdB b
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= ω  (21) 

Where the subindex I refers to an inertial frame and b to 
body frame. As the magnetic field vector is generated with 
ESAT magnetic field simulator which is fixed to the inertial 
frame, its derivative in this frame is zero: 

 BBB bI













×−=⇒= ω0  (22) 

So, the B-dot detumbling algorithm can be expressed as: 

 ( )BkBkmBdot











×=−= ω  (23) 

Which is the same as the derivative part of the PID controller. It means that the same controller can be used to 
perform a detumbling by simply set proportional and integral gain to zero. 

VI. Ground segment and communications  
ESAT communication is establish with the CCSDS space packet protocol. 
The ground segment equipment used to perform the validation tests includes a static magnetic field simulator 

composed by two neodymium magnets, a three-degrees of freedom test bed with a mass balancing system and the 
ground station able to receive the telemetry packets from ESAT and to send commands. Fig. 8 shows the 
configuration used in the tests. 

VII. Results 

A. PID control law 
To verify the behavior of this controller, a manoeuvre consisting of a rotation of approximately 165º around Z-

axis (see Fig. 3) is commanded with different gains.  
Figure 9 and Fig. 10 show the response of the system (satellite + movable part of the test bed) to this command 

when a P and PD controllers are respectively used with the same proportional gain. 
As it is shown in Fig. 10, the derivative gain allows to reduce the oscillating behavior by increasing the damping 

ratio. The use of the measurements of the gyroscope instead of differentiate the estimated quaternion seems to be a 
good idea due to the fact that finite differences do not work well with noisy signals because high frequency noise 

 
Figure 8. ESAT on the test bed 
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increases (in both signs) the local derivative value. To avoid this problem, it is usually used a low pass filter in the 
derivative part of the PID (or PD) controller. Nevertheless, as the signals come from sensors have already been 
treated, the estimate quaternion seems to be a very “clean” signal able to be differentiated without any more filter. 
Figure 9 and Fig. 10 illustrate this idea.  

This test also shows that the algorithm used do not have problem with the location of the quaternion sign, i.e. no 
matter if the sign is in the real or in the vector part of the quaternion (as it has been previously mentioned) the 
controller converges to the command attitude (if the gains do not make the system unstable). 

To avoid the apparition of a stationary 
error due to the fact that when the error is 
too small, the low commanded signal is less 
than the one necessary to initialize the 
movement, the integral part can be added to 
the controller. It has been also tested and 
verified. The integral part of the controller 
is able to drive the system to the 
commanded state even with the simply 
Euler algorithm (necessary to compute the 
integral). 

B.  Detumbling 
To check the behavior of the 

detumbling algorithm an initial angular 
velocity is given to satellite. In order to see 
the difference between the velocity 
decrement due to the external friction 
torques and the one produced with the 
magnetorquers, the algorithm is activated 
about 40 seconds after the initial impulse. 
Figure 11 shows this test and how the 
angular velocity is damped from -100 º/s to 
0 in 20 s. 
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Figure 9. Quaternion output for the validation test 
with P control 
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Figure 10.Quaternion output for the validation test 
with PD control 
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Figure 11. Angular speed evolution with the Bdot 
detumbling algorithm 
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VIII. Conclusions  
The work described in this document presents a complete ADCS for the educational satellite ESAT, which is 

now a powerful experimental tool able to support more researches and developments in the field of satellites attitude 
control. It is currently being used to test the functionality of intelligent systems, like fuzzy controllers, and robust 
control systems, with H∞ based methods. 
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