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Abstract 

A one-dimensional (1-D) model for the study of the plasma plume generated by the hollow cathode with a magnetic 
nozzle has been developed. The fluid equations of the model have been solved numerically, under the assumptions of an 
axial magnetic field and that all the parameters vary only in the axial direction. The plasma is assumed to be quasi-neutral. 
The variation of the plasma parameters as the plasma expands in the magnetic nozzle has been investigated for a xenon 
mass flowrate of 1.5 mg/s, 30 A of current and 50 mT of maximum applied magnetic field. In the energy equation for 
ions and neutrals, heat flow and thermal conductivity have been considered low and hence neglected. Finally, thrust using 
the magnetic nozzle has been computed and compared with the thrust without magnetic nozzle, finding that the 
application of the magnetic field allows for significantly higher thrust production. 

 

Nomenclature

!" = magnetic field in z direction [T] 

#̇ = mass flow rate [mgs-1] 

#%= mass of electron [kg] 

#& = mass of ion [kg] 

'% = number density of electron, m-3 

'& = number density of ion, [m-3] 

'( = number density of neutrals, m-3
 

)%* = azimuthal velocity [m/s] 

+, = permeability of free space 

A. = Keeper Area, m2 

A = area of the flux tube  

B = magnetic field [T] 

e = charge of electron 1.60217662*10123	5 

I = current [A] 

N = number of turns of solenoid 

67 = radius of the solenoid 

r = radius of the flux tube 

U = first ionization energy of Xenon [V] 

γ = specific heat ratio 

8%  = electron temperature, K 

8& = 8( = ion and neutral temperature, K 

)%" = electron axial velocity  )&" = ion axial velocity 
[m/s] 

)(" = neutral axial velocity [m/s] 

:%& = electron-ion collision frequency 

:%( = electron-ion collision frequency 

K     = Boltzmann constant,1.38064852 × 10-23 m2 kg s-2 K-

1 

S = collision cross-section 

Ф = potential [V] 

E = electric field  

P = pressure 
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I.  INTRODUCTION 

Hollow cathodes (HC) are extensively used space devices with application in electric propulsion as electron sources for 
discharge and neutralization in Hall Effect Thrusters (HET) and Gridded Ion Thrusters. The operation of the HC is based 
on field-enhanced thermionic electron emission from an insert inside the body of the cathode. Electrons are drawn to an 
external electrode (anode) which is kept at voltages slightly higher than the ionization potential of the operating gas. HC’s 
operate at temperatures of over 1600 K, thus they are typically made of refractory metals. 

Hollow Cathode Working: Figure 1 [4] is a schematic representation of a HC. A thin, orificed tube made up of refractory 
material is fed with the propellant; the “emitter” (or “insert”) is placed inside the tube in contact with the orifice by means 
of a spring spacer system. The emitter is a hollow cylinder made up of a low work function material which provides 
electrons through field enhanced thermionic effect.  A “keeper” electrode is kept at a positive potential with respect to 
cathode. The electrons which are emitted from the emitter will accelerate towards the keeper electrode which causes the 
ionization of the propellant and the creation of a plasma. This keeper electrode is wrapped around the cathode tube with 
an insulation (ceramic wall) between them [2]. 

 

 

Figure 1 - General schematic of an orificed hollow cathode. 

Hollow cathodes may represent an attractive propulsion device for a number of reasons. Spacecraft which operate primary 
electrostatic or electromagnetic propulsion systems such as gridded ion thrusters and Hall thrusters are typically required 
to carry a secondary chemical system for reaction/momentum control or to compensate for thrust misalignment. In the 
stand-alone configuration, the hollow cathodes are able to produce a decent amount of thrust required to perform these 
maneuvers for small satellites depending on the operating conditions [5]. In this paper a magnetic nozzle configuration is 
chosen for the hollow cathode (Fig. 1.1) and the detailed analysis is carried on checking whether the magnetic nozzle 
enhanced the performance of the cathode in terms of thrust production when compared to stand-alone configuration 
without magnetic nozzle. The main advantage of using the magnetic nozzle is the capability to change the strength and 
geometry of the applied magnetic field in flight allowing the nozzle to adapt to different propulsive requirements. The 
magnetic nozzle in Figure 1.1 is created with a solenoid and placed in such a way that the field is at a maximum at the 
throat of the keeper. 

 

Figure 1.1 - General schematic of a hollow cathode with a magnetic nozzle downstream of the cathode. 

A detailed explanation of the working and thrust production mechanism of the cathode with the magnetic nozzle is 
presented in section 2. In section 3 and 4 a brief description of the solenoid magnetic field topology and how the plasma 
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is confined and expanded with the diverging field is reported. Section 5 addresses the problem in terms of plasma fluid 
equations in the divergence form and then in section 6 the equations are resolved, under proper assumptions, in a 
cylindrical coordinate system which is suitable to our geometry. Section 7 and 8 describes how the equations are 
numerically solved. Finally, in section 9 the simulation results are presented with a comparison between the two cathode 
configurations, respectively with and without magnetic nozzle. 

II. MAGNETIC NOZZLE 

Magnetic nozzles are functionally similar to De Laval nozzles. They achieve thrust by converting non-directional kinetic 
energy to directed kinetic energy like in a gas dynamic nozzle where the gas internal energy is converted into axial kinetic 
energy. [1] 

 
Figure 2.1 - De Laval nozzle compared to magnetic nozzle produced by current loop with current J [8]. 

Operating Principle: 

a) Conservation of adiabatic invariant (orbital magnetic moment) v⊥ → v|| 

The magnetic moment of a particle µm = 
"#$

%

&'
  is an adiabatic constant of motion. The conditions for adiabaticity may be 

represented by the relations shown in Equation 1. 

() *
∇,

,
* ≪ 1																																									(2.1) 

Due to the spatial variation of magnetic field (eq.1) within in the particle orbit which is much less than compared to the 
magnitude of B there is a gradual drift of guiding center (transverse drift velocity) across B and a gradual change of its 
velocity (parallel acceleration) along B. 

As shown in Figure 2.2, the parallel gradient of the magnetic field acts on the particle as a force which pushes the 
magnetized electrons downstream [6].  

〈5||〉 = −|:|(∇,)||                           (2.2) 

 

Figure 2.2 - Repulsive force between the induced and the applied magnetic field [2]. 

 

Energy exchange 

As a consequence of the adiabatic invariance of |µm| and the conservation of the total particle energy, as the particle moves 
into a region of diverging magnetic field lines (Fig. 1.2) its transverse kinetic energy W⊥ decreases, while its parallel 
kinetic energy W|| increases [6]. 
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To describe adiabatic energy exchange, we can use the conservation of total kinetic energy (Eq. 2.3): 

;<=<>? = ;@ + ;|| =
"#$

%

&
+

"#||
%

&
= BCDEFGDF                                 (2.3) 

    
Figure 2.3 - Blue arrows are perpendicular velocities while red arrows are parallel velocities. 

Thickness of the arrows represents the magnitude of the velocity. [3] 
 

b) Electric Field Acceleration  

Electric field acceleration may be driven by the formation of ambipolar fields. This mechanism is a result of the high 
mobility of electrons compared to ions. In expanding magnetic nozzles, the mobile electrons establish an electron pressure 
gradient ahead of the slow ions. To maintain quasi-neutrality an electric field (fig.3) is established which accelerates ions.  

 

 
Figure 2.4 - Electric field due to charge imbalance [3]. 

 

III. Magnetic field of a solenoid 

A solenoid (Fig. 3.1) is used to create the magnetic nozzle for the cathode. The magnetic field inside the solenoid is 
essentially uniform and is directed along the axis of the solenoid; outside of the solenoid, as we move axially the magnetic 
field gets weaker and is given by Eq. 3.1. Fig. 3.1 (left) shows the magnetic field topology of the solenoid. 

B(z) = HIJKL
%M

&NKL
%OP%Q

R
%S
  ; I = 10 [A]; :T = 1.25664 × 10Z[(	\. ]/_); `a = 20 [mm]                                   (3.1) 

B(max) = HIJM
&K

      Maximum magnetic field at center                                                                             (3.2) 
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Figure 3.1 - Magnetic field topology of a solenoid. 

 

IV. Cross-sectional Area Variation 

The electrons move much faster than ions and a net charge separation occurs which results in the formation of an electric 
field. The ions are assumed to be non-magnetized and will be accelerated by this electric field. The expansion of the 
plasma is governed by the magnetic field divergence. The magnetic field bounds the plasma with a magnetic flux surface 
as shown in Figure 3.1. The cross section of this flux can be approximated using the Gauss law of magnetism: 

 

                                                                                ∇ ∙ , = 0;	∯,. eE = 0                   (4.1) 

                   	AP =
'g,i

'g
	Aj ; ((k) = l

'g,m

n'g
	Aj            (4.2) 

      
 

Figure 4.1  - Flux-tube cross sectional area variation.            Figure 4.2 - Radius of the magnetic flux tube vs. z. 

 

 

V. Plasma Fluid Equations 

Particle conservation  

Conservation of particles and charges in the plasma is described by the continuity equation [7]: 

oDp
oF

+	∇ ∙ (Dpqp) = 	Dṗ																																																																																																																																											(G) 

where Dṗ represents the rate per unit volume at which particles of type α ions or electrons produced or lost as a result of 
collisions. 
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Momentum conservation 

In constructing a fluid approach to plasmas, the three dominant forces on the charged particles in the plasma that transfer 
momentum that are considered. (1) charged particles react to electric and magnetic field by means of the Lorentz force, 
(2) the pressure gradient force, (3) collisions transfer momentum between the different charged particles, and also between 
the charged particles and the neutral gas [7]. 

]pDp s
oqp
oF

+	(qp ∙ ∇)qpt +	Dṗ]pqp 	= 	uDp(v + qp × w) −	∇xp −y]pDpzp{Nqp − q{Q
p,{

							(|) 

where zp{ represents the collision frequency between species α and β. 

Energy conservation  

o

oF
}Dp]p

qp
&

2
+
3

2
xp�+ ∇ ∙ }Dp]p

qp
&

2
+
5

2
xp�qp

= −∇ ∙ (;∇\p) + upDpvqp −	y]pDpzp{Nqp − q{Q
p,{

qp − Äp																																	(B) 

The divergence terms on the left-hand side represent the total energy flux and the terms on the right-hand side represents 
the work done by the electric field force and the collisional force [5]. 

In the above equation,  Äp = ÅDṗÇÉ represents the electron energy loss due to ionization, with ÇÉ in volts representing 
the first ionization potential of the atom and pressure term xp = DÑ\p . 

 

We made the following assumptions: 

• Quasi neutral plasma DÉ = DÖ = D 
• steady-state  Ü

Ü<
= 0 

• axially symmetric Ü
Üá
= 0 

• magnetic field , = ,Pk̂ + ,â(̂ 
• Ions not magnetized 
• negligible inertia of electrons 
• collisions electron-ion / electron-neutral 
• qÖ = qÖPk̂ + qÖâ(̂ + qÖáäã 
• qÉ = qÉPk̂ + qÉâ(̂,  Üåçg

Üâ
= 0 

• qé = qéPk̂ + qéâ(̂,  
Üåèg

Üâ
= 0 

 

VI.  Equations in cylindrical coordinate system 

The fluid equation presented above are further reduced to one-dimensional equations in cylindrical coordinates along the 
z component for electron, ion, neutral, with the assumptions stated above. 

 

Equations for electron in ‘r, φ, z’ component: 

Continuity: 

D
oqÖP
ok

+
DqÖâ
(

+ qÖP
oD

ok
= 	 Ḋ 

Momentum: 

r: −Ḋ]ÖqÖâ − −ÅDqá,P +]ÖDzÖÉ(qÉâ − qÖâ) +]ÖDzÖé(qéâ − qÖâ) = 0 

φ: −Ḋ]ÖqÖá − ÅDqÖP,â − ÅDqÖâ,P −]ÖDzÖNqáQ = 0 



7 
 

z:  −Ḋ]ÖqÖP − ÅDvP − ÅDqá,â −	
Üêg

ÜP
+]ÖDzÖÉ(qÉP − qÖP) + ]ÖDzÖé(qéP − qÖP) = 0 

,â =
−1

2
(
o,P
ok

					GDe	( =
qá
Ω
	; 		íℎÅ(Å	Ω =

u,

]
	 

,â =
−1

2

qá]

uw

o,P
ok

 

z:−îDDé]ÖqÖP − ÅDvP + D
"åï

%

&w

Ü'g

ÜP
− ÑD

Üñó

ÜP
− Ñ\Ö

Üé

ÜP
+]ÖDzÖÉ(qÉP − qÖP) +

																																																																																																																																	]ÖDzÖé(qéP − qÖP) = 0 

The azimuthal qÖá in the momentum equation can be obtained from “r” component of the electron momentum 
equation:  

qÖá =
−îDDé]ÖqÖâ

ÅD,P
−
]ÖqÖâ
Å,P

(zÖÉ + zÖé) 

Energy: 

z: ò
&
DÑ\Ö

Üåóg

ÜP
+	

ò

&
DÑ ôqÖâ

Üñó

Üâ
+ qÖP

Üñó

ÜP
ö +

ò

&
Ñ\Ö ôqÖâ

Üé

Üâ
+ qÖP

Üé

ÜP
ö = 	−DÖqÖÅvP −

																																																																																																																							ÅDÖ̇ÇÉ − 		îDDé]Ö
åó

%

&
 

 

Equations for ion in ‘z’ component: 

Continuity: 

D
oqÉP
ok

+
DqÉâ
(

+ qÉP
oD

ok
= 	 Ḋ 

Momentum: 

z:  ]ÉD ôqÉP
Üåçg

ÜP
ö = −îDDé]ÉqÉP + ÅDvP − ÑD

Üñç

ÜP
− Ñ\É

Üé

ÜP
− ]ÖDzÖÉ(qÉP − qÖP) 

Energy (from equation of state): 

1

\É

o\É
ok

=
õ − 1

D

oD

ok
 

Equations for the neutrals are same as for the ions but without the electric field terms. 

 

VII.   Initial Conditions 

From section II we have a set of nine differential equations; to solve them numerically we need nine initial conditions. 
Such conditions are found from the operating conditions of the cathode at 1.5 mg/s mass flow-rate, I = 30 A keeper 
current and from the keeper geometry and dimensions. The ions and neutrals are assumed to be initially at same 
temperature and to have the same velocity (sonic).  

1. Ф(0) = 20	[û] 
2. D(0) = 10&T	]Z† initial number density for ion-electron  
3. qÉP(0) = 	°õ`\É   the ion and neutral assumed to have sonic velocity at the keeper 
4. \É(0) = 3000	Ñ	 initial temperature for ion-neutral 
5. Dé(0) =

"̇Z¢å£g(T)"Ié(T)̇

¢åèg(T)"I
 the initial number density for neutral is found from the continuity equation at inlet and 

keeper exit using the mass flow-rate 2 mg/s and the keeper dimensions 
6. qéP(0) = qÉP(0)  
7. \é = \É  
8. qÖP(0) = 	

J

¢éÖ
 the initial electron drift velocity is found using the keeper current and the keeper dimensions 

9. \Ö(0) = 3	Åû 

The radial velocities for electron ion and neutral are assigned as thermal velocities: qâ = l
jñ

"
  . 
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VIII.   Solving Numerically 

From section II we have a set of 9 differential equations with 9 unknowns. In order to solve them numerically using 
MATLAB these equations are modified in such a form that all the variables or the unknowns which vary along ‘z’ 
(independent variable) are functions of all the variables. Mathematically they are reduced to §•(É)

§P
= ¶(ß): here ‘y(i)’ 

indicates the specific variable of all 9 variables. 

 

oФ

ok
= ®

1
3
5 +

Ñ\Ö
õÑ\É −]ÉqÉP

&

© ™
4îDé]ÖqÖP

5Å
−
îDéÑ\Ö
ÅqÖP

+
Ñ\ÖqÖâ
(ÅqÖP

−
2îDéÇÉ=é
5qÖP

+
]ÉqÉPqÉâÑ\Ö

Å((õÑ\É − ]ÉqÉP
& )
−

2]ÉÑ\ÖîDéqÉP
Å(õÑ\É −]ÉqÉP

& )

−]ÖDzÖÉ(qÉP − qÖP) − ]ÖDzÖé(qéP − qÖP)							

−
D]qá

&

2,

o,P
ok
´																																																																																																																																											(8.1)		 

oD

ok
= ™

1

õÑ\É −]ÉqÉP
& ´ ≠−2]ÉqÉPîDDé +

]ÉDqÉPqÉâ
(

− DÅ
oФ

ok
− ]ÖDzÖÉ(qÉP − qÖP)Æ																																											(8.2) 

oqÉP
ok

= îDé −
qÉâ
(
−
qÉP
D

oD

ok
																																																																																																																																																				(8.3) 

o\É
ok

=
\É(õ − 1)

D
™

1

õÑ\É −]ÉqÉP
& ´ ≠−2]ÉqÉPîDDé +

]ÉDqÉPqÉâ
(

− DÅ
oФ

ok
−]ÖDzÖÉ(qÉP − qÖP)Æ																							(8.4) 

                                                                                                                                                    
Üåóg

ÜP
= 			îDé −

åçØ

â
−

åóg

é
	∞

±

≤jñçZ"çåçg
% ≥ s−2]ÉqÉPîDDé +

"çéåçgåçØ

â
− DÅ

ÜФ

ÜP
−

																																																																																																																]ÖDzÖÉ(qÉP − qÖP)t																																															(8.5)	             

o\Ö
ok

=
−îDé\Ö
qÖP

+
\ÖqÖâ
(qÖP

+
2Å

5Ñ

oФ

ok
−
2ÅîDéÇÉ=é
ÑqÖP

−
îDé]ÖqÖP

5Ñ
																																																																																					(8.6) 

oDé
ok

= ¥
1

1−
]éqéP&

Ñ\é

µ}2
îDDé]éqéP

Ñ\é
+
]éDéqéP
Ñ\é

∂
qéâ
(
∑ −

Dé
\é

o\é
ok

−
]ÖDzÖé(qéP − qÖP)

Ñ\é
		�																														(8.7)	 

oqéP
ok

= −
Ḋ

Dé
−
qéâ
(
−
qéP
Dé

oDé
ok

																																																																																																																																											(8.8) 

o\é
ok

= \é
õ − 1

Dé
¥

1

1 −
]éqéP&

Ñ\é

µ}2
îDDé]éqéP

Ñ\é
+
]éDéqéP
Ñ\é

∂
qéâ
(
∑ −

Dé
\é

o\é
ok

−
]ÖDzÖé(qéP − qÖP)

Ñ\é
		�																																																																																																																				(8.9) 

 

IX.   Results 

Solving numerically the above discussed equations with the initial conditions presented in the section VII yields results 
which are shown in this section, also a comparison was made for all the variation of all the 9 variables with two cases. 

Case 1. Magnetic Field B = 0 

Case 2. Magnetic Field B = 50 [mT] 
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Figure 9.1 - Plasma density as a function of distance from the cathode. 

 
The plasma density as it expands into the vacuum with the magnetic function field is compared without Magnetic nozzle, 
it can be seen that the number density decreases as we move away from the cathode which is expected. 

 

             
Figure 9.2 - Ion Temperature [K]. 

 
Figure 9.3 - Electron velocity [m/s]. 
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Figure 9.4 - Ion velocity [m/s]. 

 

In fig (9.3) the electron velocity in the presence of magnetic has increased when compared to no magnetic field. The 
increment of velocity can be seen right from the beginning ‘z = 0’ at the cathode exit where there is maximum B field. 
Similar behavior is seen for the ion’s fig (9.4) this is due to the formation of ambipolar electric field 

 

 

 

Figure 9.5 - Thrust comparison of cathode with and without magnetic nozzle. 

 

X. Summary and Conclusions 

In this work the plasma fluid equations including the magnetic field B have been studied and applied for finding the 
acceleration of plasma in the magnetic nozzle. The initial equations which are in the divergence form have been reduced 
to one-dimensional equations in the cylindrical coordinate system (r, φ, z) under the assumption that the properties of the 
plasma do not vary in the radial and azimuthal direction. The model combines the electron, ion and neutral equation of 
motion and includes 1) the source term in the continuity equation; 2) electron-ion and electron-neutral collisions; 3) the 
magnetic mirror force; 4) the acceleration of ions due to the formation of the ambipolar electric field. 

The numerical integration of the equations yields the expected results. From Figure 9.3 we can see that, as the electrons 
move into the diverging magnetic field region, the velocity increases when compared to non-magnetized electrons; this 
confirms that exchange is taking place between parallel and perpendicular kinetic energy. On the other hand, the velocity 
of the non-magnetized ions (Fig. 9.4) increases as a function of distance. There is a considerable increment in the 
velocities of the ion when using magnetic nozzle by which we can confirm that the ambipolar electric field is the cause 
for this increment. 

The use of magnetic nozzle for the hollow cathode to accelerate the plasma has increased the performance of the cathode 
in terms of thrust (Fig. 9.5), which is twice as much with respect to that of a cathode without magnetic nozzle. An 
experimental verification has to be done to check or compare the obtained theoretical thrust. 
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