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Abstract In engineering, science, and technology, predictions and design decisions
can be made or informed by a variety of information sources that range from exper-
imental data to computer models. These information sources typically encompass
different mathematical formulations, different grid resolutions, different physics,
or different modeling assumptions that simplify the problem. This leads to infor-
mation sources with varying degrees of fidelity, with varying associated accuracy
and querying costs. In this paper we propose a novel and flexible way to use multi-
fidelity information sources optimally in the context of airfoil shape optimization
using both a Reynolds averaged Navier-Stokes (RANS) solver and a low fidelity
approximation based on a simplified physical formulation. The new developments
based on Bayesian optimization and kriging metamodeling allow the aerodynamic
optimization to be sped up and divide for example (on a 15-design-variable un-
constrained optimization problem) the total cost by at least two compared to a
single fidelity optimization.

1 Introduction

The use of multiple fidelities is particularly interesting for aircraft design decisions
where the high-dimensionality of the design space and the cost of the high fidelity
analyses make global optimization near impossible. Many works exist on using
multiple information sources for surrogate modeling (different accuracies for the
same quantity of interest) [1] or optimization [2,3]. Works also exist on model-
ing the differences in fidelity in an additive way [4,5]. However these approaches
fail to work in the general case where different assumptions about the physics of
the problem exist between fidelity levels. In this context, the work of [6] provided
powerful tools for multi-fidelity surrogate modeling which [7] used for a multi-
fidelity extension of the Efficient Global Optimization algorithm (EGO) [8] for
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unconstrained problems. [9] proposed an alternative formulation of multi-fidelity
co-kriging with explicit contributions of each fidelity level to the overall model. In
2002, EGO was extended to constrained problems with the development of SEGO
[10]. More recently SEGO was coupled to MOE (Mixture Of Experts) method-
ology in order to solve high-dimensional and constrained optimization problems
such as wing shape aerodynamic optimization in the SEGOMOE framework [11,
12]. SEGOMOE is used as a reference for surrogate-based optimizations with a
single fidelity (HF). Although it was developed for constrained optimization prob-
lems, in practice, SEGOMOE framework is able to treat either unconstrained or
constrained problems with or without Mixture of Experts. In this paper these
works are used to improve the efficiency of global optimization algorithms which
suffer from the curse of dimensionality. We demonstrate that the use of multiple
fidelities helps alleviate this curse and show that we can perform high-dimensional
Bayesian optimization. We begin by reviewing kriging and multi-fidelity co-kriging
formulations; we then present the multi-fidelity extension of EGO called MFEGO.
We provide a theoretical analysis of the properties of the proposed algorithm in-
cluding its global convergence. Finally, we present the results of an unconstrained
optimization of the design of a subsonic airfoil with 15 design variables and com-
pare the performance of MFEGO to standard methodologies such as EGO and
the standard gradient-based optimizer SNOPT [13].

2 Kriging and Multi-Fidelity co-kriging description

One way to build an approximation of different functions of interest is kriging. The
idea behind kriging is that the surrogate model ŷ(x) = m(x)+Z(x), is comprised of
two parts: ‘regression’ term m(x) and a functional departure from that regression:
Z(x) [10]. We can write the regression term as the following:

m(x) =
k∑
j=1

βjfj , (1)

where {f1, . . . , fk} are basis functions of m(x) and βj are coefficients weighting
these basis functions. Ordinary kriging denotes the special case where k = 1 and
f1 = 1, meaning the regression function takes the form of a constant, leaving most
of the prediction work to Z(x). Z(x) on the other hand is a Gaussian process
defined by the process variance σ2 and a spatial correlation function known as the
kernel of the process R(·, ·). The choice of the kernel influences greatly the way
data is fitted. For the rest of this paper we use the squared exponential correlation
kernel:

R(w, x) = exp

(
−

d∑
k=1

θ(k)(w(k) − x(k))
2

)
(2)

where x ∈ Rd, w ∈ Rd and θ ∈ Rd is a vector of hyperparameters of the kriging
model, denoting the correlation along the different axes of space. Once we have
defined the Kernel, and “fitted” the vector of hyperparameters θ using the training
vector XT = {x1, . . . , xn} (with xi ∈ Rd) yielding the responses YT = {y1, . . . , yn}
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(with yi ∈ R), we can express the mean and covariance of the Gaussian Process
Z(x):

µZ(x) = r(x,XT )′R−1(XT , XT )YT (3)

σ2Z(x) = σ2(1− r(x,XT )′R−1(XT , XT )r(x,XT )) (4)

where x ∈ Rd is the prediction point, and XT is the locations of training set.
R(XT , XT ) is the matrix of correlations among the training points. r(x,XT ), on the
other hand, denotes the correlation between the prediction point and the training
points. Note that Eq. (3) ensures the interpolation of the training points. In fact,
if we make a prediction at training point xi, the vector r(xi, XT ) will correspond
to the ith line of R(XT , XT ), so that (r(xi, XT )′R−1(XT , XT ))′ will give the ith

unit vector and so µZ(xi) = yi. If we take into account the ‘regression’ term m(x)
the prediction becomes:

µ(x) = m(x) + r(x)′R−1(YT −m(x))

which we can also express using the basis introduced in Eq. (1):

µ(x) = f(x)′β + r(x)′R−1(YT − Fβ) (5)

σ2(x) = σ2
[
1− r(x)′R−1r(x) +(

f(x)′ − r(x)′R−1F
)(

F ′R−1F
)(

f(x)′ − r(x)′R−1F
)] (6)

where β is the vector of coefficients βj introduced in Eq. (1). F is the matrix of
the values of the regression basis function at the positions of the training points,
whereas f(x) is the vector of values of these functions at the prediction point.
When learning multi-fidelity models we can make assumptions to simplify the
problem and inform our model (which results in a decrease of the data needed to
learn the model). In general when modeling multiple fidelities that involve different
assumptions on the physics of the problem (e.g., viscosity, compressibility, or tur-
bulence in aerodynamics models), chances are that the low and high fidelities will
have different scales and sometimes (in rare cases) poor correlations. [6] proposed
a formulation that takes the correlation and scaling into account by introducing a
factor ρ ∈ R in the formulation above:{
fHF (x) = ρfLF (x) + δ(x)
with fLF (·) ⊥ δ(·) (7)

where δ(·) is the discrepancy function tasked with capturing the differences be-
tween the low- and high-fidelity functions (denoted resp. by fLF (x) and fHF (x))
beyond scaling. The addition of the term ρ increases the robustness of the model.
[9] proposed an implementation using the regression term expression of universal

kriging introduced in Eq. (1) and extended it to take the lower fidelity model as
a basis function such that the regression term becomes:

m(x) =
k∑
j=1

βjfj + βρfLF

where βρ is an estimation of ρ performed by a classic parameter estimation such as
the likelihood maximization [14,15]. Assuming the independence of the high and
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low-fidelity models (two levels here), the mean and variance of the high-fidelity
model are expressed:

µHF = ρ µLF + µδ (8)

σ2HF = ρ2 σ2LF + σ2δ . (9)

The approach can be extended to l levels of fidelity. To make this explicit let us
denote f0, . . . , fl the hierarchically ranked fidelity codes (from lowest f0 = fLF to
highest fl = fHF ). Using the recursive formulation, we write:

µk = ρk−1 µk−1 + µδk (10)

σ2k = ρ2k−1 σ
2
k−1 + σ2δk . (11)

The formulation by Le Gratiet [9], if satisfying the nested Design Of Experiments
(DOE) requirement, offers explicit expressions of the contribution of fidelity levels
to the uncertainty of the model. The nested DOE requirement states that Xl ⊆
Xl−1 . . . ⊆ X0 where Xi is the vector of training points of the fidelity i and l

is the highest fidelity. So with this assumption, a point computed at the highest
fidelity has to be also computed at the lowest fidelities. We introduce the following
notation in Eq. (11):

σ2δ,k = σ2δk for k ∈ {1, . . . , l} (12)

σ2δ,0 = σ20 for k = 0.

We express the uncertainty contribution of the fidelity level k at design point x
(corrected from page 163, [9]) as:

σ2cont(k, x) = σ2δ,k(x)
l−1∏
j=k

ρ2j , (13)

which means that the variance contribution of the fidelity level k: (σ2δ,k) is scaled
using the recursive values of ρj until we get to the highest fidelity l. These con-
tributions are essential to build Sequential Design or Optimization strategies. A
Python implementation of multi-fidelity co-kriging based on Le Gratiet’s work can
be found in the open source Surrogate Modeling Toolbox (SMT). 1

3 MFEGO methodology

Bayesian optimization is defined by J. Mockus [16] as an optimization technique
based upon the minimization of the expected deviation from the extremum of
the studied function. The objective function is treated as a black-box function. A
Bayesian strategy sees the objective as a random function and places a prior over it.
The prior captures our beliefs about the behavior of the function. After gathering
the function evaluations, which are treated as data, the prior is updated to form
the posterior distribution over the objective function. The posterior distribution,
in turn, is used to construct an acquisition function (often also referred to as infill

sampling criterion) that determines what the next query point should be.

1 https://www.github.com/SMTorg/smt
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3.1 Efficient Global Optimization: EGO

We describe here the Expected Improvement infill sampling criterion as well as
the EGO algorithm based on [8]. Let F be an expensive black-box function to be
minimized. We sample F at the different locations X = {x1, x2, . . . , xn} yielding
the responses Y = {y1, y2, . . . , yn}. We build a kriging model (also called Gaussian
Process) with a mean function µ and a variance function σ2 as presented in Sec-
tion 2. The next step is to compute the Expected Improvement (EI) criterion. To
do this, let us denote:

fmin = min{y1, y2, . . . , yn},

the EI function can be expressed:

E[I(x)] = E[max(fmin − Y, 0)] (14)

where Y is the random variable following the distribution N (µ(x), σ2(x)). By ex-
pressing the right-hand side of Eq. (14) as an integral, and applying some tedious
integration by parts, one can express the expected improvement in closed form:

E[I(x)] =

{
(fmin − µ(x))Φ

(
fmin−µ(x)

σ(x)

)
+ σ(x)φ

(
fmin−µ(x)

σ(x)

)
, if σ > 0

0, if σ = 0
, (15)

where Φ(·) and φ(·) are respectively the cumulative and probability density func-
tions of N (0, 1). Next, we determine our next sampling point as:

xn+1 =x (E[I(x)]) . (16)

We then test the response yn+1 of our black-box function F at xn+1, rebuild the
model taking into account the new information gained, and research the point of
maximum expected improvement again.

3.2 EGO extension to Multi-Fidelity: MFEGO

We extend the EGO algorithm to work with multiple fidelities. In practice, as the
SEGOMOE framework proposed by [11,12] is capable of handling both uncon-
strained and constrained problems and this with or without Mixture of Experts,
we choose to note in this paper the unconstrained version of SEGOMOE without
Mixture of Experts as EGO. The multi-fidelity is defined as MFEGO. The main
idea of the proposed algorithm is that the search for the most promising sam-
ple and the choice of level of enrichment can be seen as problems to be tackled
sequentially. Indeed, we can consider that given a Gaussian Process or kriging
model (mkGP (µ, σ2)) and a current best point (fmin), EI (or another infill sam-
pling criterion) can be trusted to find the next most promising point. The choice of
the fidelity level of enrichment is a different question that can be formulated thus:
given the uncertainty at a chosen point, is it more interesting to query it at the
highest-fidelity level or at the lower ones? This choice of a two-stage decision pro-
cess (fix most promising point then fidelity level of enrichment) offers the advantage
of greatly reducing the time of infill sampling criterion optimization without being
restrictive in any way. The choice of the fidelity level of enrichment translates an
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idea stating that one should favor the use of low-fidelity samples for exploration,
and high-fidelity ones for exploitation, while making sure that there is no resam-
pling at the same location. Let f0, . . . , fl be the lowest- to highest-fidelity of a
quantity of interest, with querying costs c0, . . . , cl. Using the recursive formulation
[9] with a constant ρ, we know that:

fk = ρk−1 fk−1 + δk for k ∈ {1, . . . , l} (17)

ρk−1 = corr(fk, fk−1)
std(fk)

std(fk−1)
(18)

σ2k = ρ2k−1 σ
2
k−1 + σ2δk (19)

where the notations are std(·) for the standard deviation and corr(·, ·) for the
correlation. Using the notations introduced in Eq. (12), the variance contribution
of the fidelity level k at design point x∗ defined by Eq. (13) is recalled here:

σ2cont(k, x
∗) = σ2δ,k(x∗)

l−1∏
j=k

ρ2j .

Due to the necessity of nested DOEs, all lower fidelities must be enriched at the
same time.Thus, the uncertainty reduction becomes:

σ2red(k, x
∗) =

k∑
i=0

σ2δ,i(x
∗)
l−1∏
j=i

ρ2j .

The corresponding cost to the enrichment of level of fidelities 0 through k is:

costtotal(k) =
k∑
i=0

ci.

We propose the level of enrichment criterion as follows:

t =k∈(0,...,l)
σ2red(k, x

∗)

costtotal(k)2

where t is the highest fidelity level to be added (the nested DOE imposing to enrich
all lower fidelities). It is questionable whether it is possible to always find a common
unit of measurement for the cost of an observation and the variance reduction,
but as the variance scales with the square of the correlation (Eqs. (18) and (19)),
it is reasonable to penalize the uncertainty reduction by the square of the cost.
The correlation translates the quantity of information shared between multiple
functions. Note that Le Gratiet [9] introduced a Sequential Design strategy where
the uncertainty is simply penalized by the cost. Tests were realized with both
approaches (penalization with simply the cost or the square of the cost). The
penalization with the square of the cost constantly gave better results.
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Algorithm 1 MFEGO Algorithm

1: procedure Enrich level(model, x∗, costs) . Which fidelities to query
2: compute σ2

red,0(x∗,model) . Uncertainty reduction by querying at x∗ at level 0

3: crit0 ← σ2
red,0(x∗,model)/costs[0]2

4: enrich Fidelity 0 . LF has to be computed because of nested DOEs
5: update datasets X0 and Y0
6: for k ∈ {1, . . . , l} do
7: compute σ2

red,k(x∗,model)

8: critk ← σ2
red,k(x∗,model)/(

∑k
i=0 costs[i])

2

9: if critk ≥ critk−1 or σ2
red,k−1 ≤ ε then . ε: machine resolution

10: enrich Fidelity k
11: update datasets Xk and Yk
12: else
13: break;

14: return updated datasets

15:
16: procedure run(F, niter, costs) . Find the best minimum of F in niter iterations
17: while i ≤ niter do
18: mod← model({X0, . . . , Xl}, {Y0, . . . , Yl}) . Multi-fidelity surrogate model
19: fmin ← minYl
20: xi+1 ← EI(mod, fmin) . choose x that maximizes EI
21: ENRICH LEVEL(mod, xi+1, costs)
22: i← i+ 1

23: fmin ← minYl
24: return fmin . This is the best known HF solution after niter iterations

3.3 Algorithm

Now that the choice of level heuristic has been presented, we can summarize the
proposed strategy in Algorithm 1. We note {X0, . . . , Xl} the DOEs of the fidelity
levels 0 through l. {Y0, . . . , Yl} are the corresponding responses.

As can be seen in line 19 of the MFEGO algorithm, we only update the value
of fmin by the best HF value. That is because other fidelity codes and datasets
are only considered to help MFEGO and are not the objective of optimization.
By only updating the best solution when a high fidelity sample is requested, the
optimization process is made more robust. Indeed, low-fidelity can only be used
to reduce some amount of the expected improvement, which is an amount due to
uncertainty (Exploration), rather than knowledge (Exploitation). This property
ensures that MFEGO converges to the global optimum of the high-fidelity function
(in the same sense that EGO converges to the global optimum of a function). Note
that the criterion integrates the correlation of the fidelity levels and thus makes the
algorithm more robust to cases where there is a poor correlation between fidelity

levels. Indeed, when ρk → 0,
σ2
red(k,x

∗)
costtotal(k)2

→ 0, prompting the algorithm to move

to the higher fidelities. It is important that the algorithm will not resample high-
fidelity points as the EI at these points is zero. It will also not resample low-fidelity
points as the choice of level criterion will become zero for the low fidelity points,
pushing the algorithm to query the high fidelity ones, thus enhancing the model
and solution.
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3.4 Illustration on 1-D analytic problem

The proposed strategy is illustrated on the following 1-D analytic problem [7]:

fHF (x) = (6x− 2)2 × sin(2(6x− 2))

fLF (x) = 0.5fHF + 10(x− 0.5)− 5

In Figure 1 we represent graphically these two fidelity levels: fHF is the expensive
function and fLF is the cheap one. We make the assumption that the cost ratio

Fig. 1: Multi-fidelity of the 1-D analytic problem [7].

between the fidelity levels is 1/1000. We start the optimization with 3 high-fidelity
samples and 6 low-fidelity ones. We define the low- and high-fidelity datasets as:

X0 = {xLF1 , xLF2 , xLF3 , xLF4 , xLF5 , xLF6 } and X1 = {xHF1 , xHF2 , xHF3 }.

The corresponding responses are Y0 and Y1 where Y0 = fLF (X0) and Y1 =
fHF (X1). MFEGO algorithm is used to sequentially search through the space for
the maximum of EI and enrich the multi-fidelity surrogate model. The algorithm
has at each step two choices:

– query once the low-fidelity only,
– query once the low-fidelity and once the high-fidelity if the EI cannot be rea-

sonably reduced by a low-fidelity query.

Figure 2 shows the reduction of EI resulting from cheap exploration, high-fidelity
exploitation and model enhancement. After adding 4 LF points to explore the
space and reduce EI (some low-fidelity points can be indistinguishable due to
their proximity in the images above), Fig. 2-(c) shows the local exploitation and
enhancement of the model by querying the high-fidelity code once. The next HF
sample finds the global optimum of the function.
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(a) Initial DOE (b) 2nd iteration

(c) 4th iteration (d) 7th iteration

Fig. 2: Evolution of EI throughout MFEGO iterations on the 1-D analytic problem
[7].

Table 1: 1-D analytic problem [7] optimization summary.

HF DOE LF DOE HF Opt LF Opt Cost

MFEGO 3 6 2 7 5.013
EGO 4 - 11 - 15

To summarize, we find the optimum after 7 iterations: 7 LF samples and 2
HF samples have been added, whereas the initial DOE was 6 LF points and 3
HF points (see Table 1). The classical mono-fidelity EGO approach with an initial
DOE of 4 HF points required 11 additional HF points to find the global optimum,
with a total cost three times higher than the MFEGO cost (15 compared to 5.013).

To finish, we highlight that the choice of level criterion can be used with any
Exploration/Exploitation algorithm as the same idea can be applied. We use the
low fidelity to reduce the uncertainty of the model and thus reduce the Exploration
contribution to the infill sampling criterion. The highest fidelities can then be used
for the Exploitation and effectively minimize the objective.
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4 Airfoil shape optimization

To validate MFEGO, compare it to EGO and later gradient-based approaches on
a more complex problem, we consider an unconstrained airfoil shape optimization
with 15 design variables. Firstly, the test case is described and then the results are
presented.

4.1 Test case description

For the airfoil shape optimization test case, we used a parametrization based on
a mode decomposition proposed by [17]. This decomposition is a Singular Value
Decomposition (SVD) on the camber and thickness of an airfoil database. We
use this parametrization to define an airfoil geometry for which we can compute
characteristics such as the Lift Coefficient Cl, Drag Coefficient Cd, and Pitch-
ing Moment Cm. The goal is to find the global optimal geometry of the airfoil
as computed by the high-fidelity code ADflow. ADflow has a Reynolds Averaged
Navier-Stokes (RANS) multi-block flow solver developed at the MDOlab (Uni-
versity of Michigan), [18,19]. In order to help the MFEGO algorithm to find the
optimum at the lowest cost possible, we use a low-fidelity code called Xfoil [20],
which takes a fraction (1/200) of the HF code time to give an approximation of
the result using hypotheses simplifying the problem. We use the correlation be-
tween the low and high fidelities (Xfoil and ADflow) to improve the accuracy of
the model and perform faster optimizations. It is worth mentioning that, thanks
to the works of [21–23], ADflow is able to compute derivatives through a combi-
nation of automatic differentiation and adjoint method. This allowed us to have a
gradient-based optimization reference to compare the Bayesian optimization ap-
proaches with, especially considering that 2D airfoil optimizations are unimodal
[24]. We should also point out that to realize this optimization, work has been
done on the noise estimation and regression/re-interpolation of the multi-fidelity
surrogate model based on the work of [7].

4.2 15-D unconstrained optimization

We consider the optimization problem described in Table 2. To compare MFEGO
and EGO, let us define the series ‘Gain’ of a Bayesian optimization at iteration i

as:

Gaini = |soli − solDOE |

where soli is the best known solution after the ith iteration and soldoe is the
best known solution resulting from the random sampling of the initial Design Of
Experiment. We use the Gain to compare the efficiency of the EGO and MFEGO
algorithms.

For this problem we had access to the gradient-based optimum using SNOPT
[13] represented by the red dashed line in Figure 3. Figure 3 shows the Gain as
a function of the cost compared with the SNOPT reference. We see that EGO
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Table 2: Definition of the 15-D unconstrained optimization problem.

Function/variable Description Quantity Range

maximize L/D Lift-to-Drag ratio 1
with respect to α Angle of attack 1 [0.0, 8.0] (◦)

θ Thickness modes 7 [0, 1]
δ Camber modes 7 [0, 1]

Total variables 15

(a) EGO (b) MFEGO

Fig. 3: Comparison of ’Gain’ as a function of the cost for EGO and MFEGO for
unconstrained L/D maximization (15 Design Variables). The red dashed line is
the optimum found by SNOPT.

has long plateaus where the objective does not improve, whereas MFEGO im-
proves at (almost) every HF call. This is due to the fact that EGO is an Exploita-
tion/Exploration compromise. By using the lower-fidelity, MFEGO can explore
the design space more cheaply, leaving HF calls for effective improvement of the
objective. This observation is consistent across multiple runs. This is particularly
important when increasing the dimension of the problem. Using multiple fidelities
allows MFEGO to scale better than EGO w.r.t the number of design variables.
One way to make further use of the multi-fidelity kriging is to reduce the cost of
the initial DOE. For example, instead of using 40 HF (for a total cost of 40), we use
16 HF and (approximately) 800 LF (for a total equivalent cost of (approximately)
20). We see in Figure 4 that by doing so, the space is better mapped, and that
this improves greatly the speed of convergence at a much lower cost. The dashed
vertical blue line in Figure 4 separates the initial DOE building phase and the
optimization driven by the Bayesian algorithm phase that comes after that.

Figure 4 shows that MFEGO gives better results than EGO even with a less ex-
pensive initial DOE. The low-fidelity, much cheaper, contributes some information
to the surrogate model. MFEGO searched through the design space using 437 LF
points and probed 8 HF points to attain the SNOPT solution (110.7 for SNOPT
against 110.5 for MFEGO). We summarize the results in Table 3. The columns
HF DOE and LF DOE in Table 3 denote the number of samples of each fidelity
used to build the initial DOE. The columns HF Opt and LF Opt are respectively
the number of high-fidelity (HF) and low-fidelity (LF) calls that the optimization
routine used after that. The Cost is a cost normalized by the HF cost, so that
HF calls contribute 1 to the Total Cost, and LF calls contribute 1/200. It can be
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(a) EGO (b) MFEGO

Fig. 4: Comparison of evolution of objective as function of iterations for EGO
and MFEGO for unconstrained L/D maximization with 15 design variables. The
red dashed line is the optimum found by SNOPT and the blue one marks the
optimization starting point.

Table 3: L/D maximization: Comparison of cost and objective for EGO and
MFEGO for the unconstrained optimization with 15 design variables.

HF DOE LF DOE HF Opt LF Opt Cost Obj

EGO 40 - 30 - 70 104.9
MFEGO 16 744 8 437 29.89 110.5
SNOPT - - 21 - 21 110.7

directly interpreted as the CPU time needed to reach the solution. We should note
that EGO and MFEGO were stopped before ‘convergence’ (Bayesian optimization
doesn’t have a characterization of optimum, a budget of iterations is generally im-
posed as stopping criterion) and that at ‘convergence’, EGO and MFEGO should
give the same optimum. In Table 3, the cost of SNOPT optimizations combines
the number of direct problems solved (13), and the number of adjoint problems
solved to compute derivatives (13×1 = 13). The overall cost is then calculated as:

CostSNOPT =
timeDirect + timeAdjoint

timeDirect
×Niter

where timeDirect is the time needed for solving the Niter direct problems, and
timeAdjoint is the time needed to solve Niter × Nfuncs adjoint problems. Nfuncs
is the number of functions evaluated, here 1: L/D for the objective. If constraints
exist, then the number of evaluated functions goes up. Niter was 13 in this case.

The calculation of the SNOPT cost allows us to compare it to the MFEGO
and EGO costs. We see that with less than half the cost, MFEGO was much more
efficient than EGO. However, SNOPT is approximately 40% faster than MFEGO,
this is due to multiple factors that would not be present in a general case:

– the present problem, as said earlier, is unimodal. In a general case, the SNOPT
cost would be multiplied by a chosen number of multistarts to counteract the
multimodality of the problem,

– the present problem being not properly constrained (unconstrained optimiza-
tion), the optimum is found on the edge of the design space, where the surrogate
model is the least accurate. The surrogate model hence spends much more time
learning the function in the zone of interest,
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– the addition of constraints is expected to affect the cost of MFEGO and
SNOPT in two ways that are favorable to MFEGO. Firstly, if the constraints
and bounds are chosen properly, the optimum will move to the middle of the
design space where the surrogate is more accurate. Secondly, with the addi-
tion of constraints, SNOPT will need, in addition to the direct computations,
the adjoint solving for the constraints, whereas MFEGO only needs the direct
computations.

5 Conclusion

In this paper we formulate a natural multi-fidelity extension for EGO. Optimiza-
tion problems have been treated within the SEGOMOE framework. We prove, on
a first promising high-dimensional test case (15 design variables), the benefits of
multi-fidelity information sources, especially when it comes to improving the ex-
ploration of the design space. Future work will focus on extending and running the
algorithm on constrained test cases possibly with multimodality (e.g aerodynamic
shape optimization of a wing). We also think it will be beneficial to integrate the
gradient information in the surrogate model and possibly in the devising of new
criteria to allow for faster optimization times.
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