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Abstract After specifying the general context and needs of the paragliding industry, a new model to com-
pute paraglider cloth dynamics is presented. Applications in research and development are then shown.
Results are very promising: using simulations is drastically changing the way paragliders are being devel-
oped. Then the firsts steps towards the use of Immersed Boundaries with Lattice Boltzmann method for the
highly coupled, transient high fidelity fluid-structure interaction simulation of Paragliders are presented.
Despite strong bias due to under-resolved boundary layers, numerical results of the cloth deformations are
in an acceptable agreement with wind tunnel measurements conducted in a previous study on a small and
simple parachute geometry.
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1 Introduction

Paragliders are manned lightweight aircraft. They are non-motorized: pilots rely on thermals (hot air
currents flowing up) to gain altitude, and then glide until the next thermal to go as far as possible. The
pilot is connected with bridle lines to the wing (also called canopy), made of cloth, and pressurized thanks
to air intakes on the leading edge (see figure 3). Thus, paragliders are not rigid and can be folded to fit into
a backpack. This is also why they are prone to collapse in turbulent air, see figure 2. Main performance
indicators of a paraglider are glide ratio and sink rate, and the designer who aims to optimise its performance
will strive to maximise the former and minimise the latter, while keeping a safe and reliable behaviour in
case of collapse.
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Fig. 1 Components of a Paraglider Fig. 2 Test pilot performing a collapse for certification

Fig. 3 Internal structure example Fig. 4 A Billowed cell.

A cell is the area delimited by two ribs. Diagonals and straps (see figure 3) are used in order to decrease
the number of line attachment points (also called tabs) on the canopy. There are no stiff elements in the
span-wise direction. Instead, in order to maintain the wing shape in flight, paragliders rely on horizontal
aerodynamic loads that result from the curvature of the wing, which is also called arc. Figure 4 illustrates
how a well designed paraglider must have the correct top surface and lower surface panel shape in order not
to stray away from the original design once inflated. The idea of lengthening panels to balance aerodynamic
pressure forces with span-wise tensions is called panel shaping or billow shaping.

A glider’s arc plays a key role in determining span-wise tensions and thus the panel shaping distribution.
However, this depends on many factors. For instance, line angles affect span-wise loads and are therefore
crucial to determine billow shape and handle constraints within the canopy. Up to now the chord-wise
and span-wise distribution for panel shaping were chosen empirically based on the designer’s experience.
However small changes affect tremendously the behavior of the canopy and a precise optimization requires
a long and expansive design process. The goal of this project is to develop new simulation tools to be able
to tackle these issues with fewer prototypes and test flights.

2 Structural Modeling

For the structural modelling of the cloth, a simple yet efficient approach is widely studied in the literature:
Mass-Spring Systems. They are known for their low computational cost and ability to represent buckling and
other complex non-linear behavior. Mass-spring models are in general used to obtain a realistic rendering
of cloth deformations in video games or animated movies. However, Shi et al [1] demonstrated that these
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models can also be applied to simulate round-parachute inflation. Physical properties of the fabric (Young
modulus, Poisson ratio) were validated in their code. This article showed that mass-spring systems have a
great potential for paraglider cloth simulations. X.Provot [2] presented a general framework to implement
a model for cloth dynamics. The mesh is arranged as a network of structural, bending and shear springs as
illustrated in figure 5. The order of magnitude of the natural period of the system is given by:

T0 ≈ 2π

√
m

K

With m being an order of magnitude for the mass and K a stiffness factor. Consequently, when the cloth
is relatively rigid with very small elastic deformations (which is the case for paragliders), K is very high
and the time step for numerical integration has to be very low to ensure numerical stability. This can be
compensated for with artificial stiffness such as Provot’s deformation constraints to simulate cloth with low
stiffness parameters while avoiding unrealistic deformations in high stress regions. However, even if such
technique is good to achieve realistic motion of the fabric it is not acceptable for a fine representation of
the cloth physics, especially when one wants to analyze the stress distribution within the sail of a glider
for instance. Thus explicit time integration methods, in spite of their low computational costs, will require
low time steps to avoid instabilities which will lead to expansive simulation times. It is important to bear
in mind that explicit integration methods are generally used for transient simulations, where energy must
be conserved at all times to ensure accuracy. This is why they are not the most efficient when it comes to
reaching a steady state as fast as possible.

A more cost-efficient alternative, implicit integration, which allows very large time steps and shows ex-
cellent stability properties, is presented by Baraff and Witkin [3]. However such method requires solving a
large dense system. Given the number of points in the mesh, between 5x105 and 1.5x106 nodes, storing the
matrix in memory can be a problem without massive supercomputers. A solution is to reformulate Euler’s
implicit scheme as an optimization problem, as presented by Martin et al [4] and Liu [5]. Their results are
promising: they achieved stable simulations of very stiff fabric. One drawback of implicit integration would
be the important damping introduced by this very dissipating scheme. However, when the objective is to
reach a steady state as fast as possible this is not a problem.

Fig. 5 Arrangement of strings for the structural mesh. There are three different types of springs for which stiffness has to
be calibrated according to the fabric properties.

Let’s consider a spring between two connected nodes Pi and Pj of the mesh (see figure 6). Each node
is subject to an external force (for instance because of aerodynamic pressure forces). Regarding internal
forces, they are given by Hooke’s law:

f ij = kij(dij − deqij)
PiPj

dij
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Fig. 6 Mesh nodes are connected by springs answering Hooke’s law.

where dij is the length of the spring at a time t and deqij is the initial rest length of the spring. Initial
constrains can be applied at the beginning of the simulation by changing these values.
Internal forces can be re-written as:

f ij = kijPiPj(1−
deqij
dij

)

We can then apply the law of dynamics. For each point i in the mesh:

Nbi∑
j=1

f ij + Fi − β
dPi

dt
= mi

d2Pi

dt2

Where Nbi is the number of nodes connected with i. β is a numerical damping factor. Then using the above
expression:

mi
d2Pi

dt2
=

Nbi∑
j=1

kijPiPj(1−
deqij
dij

) + Fi − β
dPi

dt

We can reformulate this equation as follows:

mi
d2Pi

dt2
=

N∑
j=1

AijPj + Fi − β
dPi

dt
(1)

where if i 6= j and i and j are connected nodes:

Aij = kij(1− deqij
dij

)

and

Aii = −
Nbi∑
l=1

kil(1−
deqil
dil

)

and Aij = 0 if i and j are not connected by a spring. The matrix A is of size N ×N with N being the
number of nodes in the mesh. Despite its large size, the matrix is very sparse, because a given node is only
connected to a small number of neighbours.

To update and realize operations on the matrix A the C++ library Eigen was widely used. It features
as well OpenMP parallel compatibility to significantly reduce simulation costs. equation 1 can be divided
in three uncoupled equations:

M ∗ aX = A ∗X + β ∗ VX + FX (2)
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With X = x, y or z. Only the numerical integration of x coordinate equation will be detailed. For the
two others, it is strictly analogous. M is the (diagonal) mass matrix, x, vx, ax contains the x-coordinates for
the position, speed and acceleration of all points respectively. Baraff and Witkin [3] presented the implicit
Euler integration as follows:

xn+1 − 2xn + xn−1 = dt2M−1(Axn+1 + β
xn+1 − xn

dt
+ Fx) (3)

Equation 3 can then be reformulated according to Liu’s [5] notations, denoting the unknown state
x := xn+1, the previous known states y := 2xn − xn−1, and the right hand side f(x) := Axn+1 + β

xn+1−xn

dt + Fx.

M(x− y) = dt2f(x) (4)

Solving 4 implies minimizing the function g below:

g(x) =
1

2
(x− y)TM(x− y) + dt2E(x) (5)

Where ∇g = 0 is exactly 4. E has the dimension of an energy ∇E(x) = f(x). One of the great advantage
of this form is that there is no need to calculate the Hessian matrix which is dense and represents very high
memory cost. This formulation is called Variational or Optimization Euler implicit.

Finally the optimization problem can be summarized as follows:

minxg(x) = (x− y)TM(x− y)− dt2(xTAx+ xTFx − βxT vx) (6)

Knowing:

vx =
x− xn
dt

(7)

and:

∇g(x) = M(x− y)− dt2(Ax+ Fx + βvx) (8)

The crux of the matter is now to choose an adequate technique to solve the optimization problem given
by equation 6. Martin et al or Liu suggest Newton classical gradient-based descent technique. However,
there are several drawbacks: first, the Hessian matrix has to be computed, which can cause memory issues,
and in some cases it led to stability problems.
Therefore, Hessian-based methods should be avoided in our case. After some bibliographical research, the
most appropriate method seemed the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). In-
deed, it only uses an approximation of the inverse of the Hessian matrix, with efficient linear memory usage.
The optimization-L-BFGS numerical integration shows excellent stability properties and converges fast.

3 Application to Paragliders

3.1 Geometry management

Specific surface meshing program has been developed to generate surface discretization based on CAD
shape. In this current model local spring stiffness are defined as global constants which can be correct
according to V.Baudet et al. [6], H.Delingette et al. [7] if the size of mesh quadrangles remains constant
in the entire structure. Thus, special effort has been carried out to minimize mesh distortions. Figure 7
shows how a wing section is meshed. The mesh is coarsened for visualization purposes. A close up view of
the opening is given in figure 8. In the simulation cases presented in section III. the internal flow is not
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resolved, replaced by an arbitrary value for the internal pressure, and the opening is not visible on the mesh.

Fig. 7 Mesh for a wing section. Fig. 8 Close up view of the opening

3.2 First applications

Fig. 9 Leading edge view. Fig. 10 Sail support issue (inside the black circle).

The structural model has been loosely coupled with steady low fidelity Computational Fluid Dynamics
method. In these simulations only the risers are imposed Dirichlet conditions. the rest of the structure is
completely free. Results are post-processed once the glider converges towards its equilibrium position. A
first application is presented in figure 9, the cloth surface is colored with mechanical stresses distribution.
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During the development of this entry level school glider the use of simulation lead to an excellent control
of sail deformations. However only visual partial validation of simulation results has been performed at the
moment. Another example is shown in figure 10 were a sail support issue already known in an existing
rejected prototype has been observed in simulation as well. Then figure 11 shows how fluid-structure
interaction simulations can be used to identify undesired stress concentrations. In this case, there are on
the lower surface high stress regions. Such design problem can be anticipated with simulation to avoid very
expansive late stage design issue like a load test failure.

Using simulations changes significantly the way paragliders are developed. Indeed, previous empirical
processes consisted in finding a balance between profile, arc, twist, sweep and panel shaping with several
prototypes. The approach now is to choose the geometrical features of the wing to achieve a desired level
of glide performance and handling qualities. Then using the simulation program designers can calculate
the panel shaping distribution to ensure that the design shape is respected when the glider is flown. So the
same optimization can be performed with fewer prototypes.

Fig. 11 Visualisation of undesired stress concentrations on the lower surface.

4 Lattice Boltzmann approach

The development of Fluid-Structure interaction methods specifically dedicated to paragliders has not been
detailed in the literature. However, Ram-air and round parachutes are more thoroughly studied. N. Fogell
et al. [8] present a loosely coupled approach to simulate a single parachute cell with a Reynolds-Average
Navier Stokes fluid simulation coupled to a finite-element model. However extension to full 3D wing is
not presented because of the high computational cost it would represent. B.Perin et al. [9] showed that
with ALE (Arbitrary Lagrangian Eulerian) method coupled to Finite Element structural model interesting
results regarding cloth deformations can be obtained despite a very coarse aerodynamic modeling.

These studies show that a crucial point is to manage fluid re-meshing when the cloth is moving (an
other example is given in [10]. Thus a new approach is considered to achieve high-fidelity strongly coupled
fluid-structure interaction simulation without complex dynamic fluid mesh adaptation around the cloth’s
structure: the immersed boundary method. This boundary treatment strategy is widely used and studied
in the literature with a Lattice Boltzmann approach (IB-LBM), for instance in [11]. LBM are particularly
interesting for high performance computing and efficient management of Cartesian grids.
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Lattice Boltzmann theory is presented by Chen and Doolen [12]. Lattice Boltzmann models do not
directly simulate the evolution of the flow velocity. Instead, they calculate the particle distribution function
fi(x, t) with the velocity ci at every point x and time t thanks to a microscopic description of the fluid.
Navier-Stokes equations for incompressible fluid flows can be recovered from the LB numerical scheme [13].
The fluid is modelled by identical particles whose velocities are restricted to a finite set of vectors. Here,
the 3D Lattice with 19 vectors D3Q19 is considered. Macroscopic variables on each node are defined as
moments of the particle populations:

ρ =

q−1∑
i=0

fi

ρu =

q−1∑
i=0

cifi

A Lattice Boltzmann iteration takes the system to a time t towards a time t+ 1 in two steps. First, a
collision operator Ω is evaluated on each node, to take the distribution function to its post-collision state:

f ′i(x, t) = Ωi(f0(x, t), ..., fq−1(x, t))

This is followed by a streaming step, which takes the post-collision variables to a neighbor node deter-
mined by the corresponding lattice vector:

fi(x + ci, t+ 1) = f ′i(x, t)

Immersed Boundary (IB) conditions in Palabos, the open source LBM library used for this project, are
implemented as proposed by T. Inamuro [14]. IB are particularly adapted to cloth simulation as there is no
need to explicitly formulate bounce back conditions and destroy or create lattice nodes to adapt the fluid
mesh to the fabric geometry. Lets consider a parachute surface composed of N points.
We will now use Lattice units where: ∆t = 1 and ∆x = 1.
Let Xk(t) and Uk(t), k = 0..N be the points of the moving boundary and their velocities respectively.

Then the temporal fluid velocities u(Xk, t) are interpolated on the Lagrangian surface points as follows:

u(Xk, t) =
∑
x

u(x, t)W (x−Xk)

Where
∑

x indicates the sum of all the Eulerian grid points. W is a weight function for the fluid-solid
velocity projection, with W (a, b, c) = w(a)w(b)w(c). Here, a, b and c are the three components of the vector
x−Xk, and:

w(r) =


1
8 (3− 2|r|+

√
1 + 4|r| − 4r2), if |r| ≤ 1,

1
8 (5− 2|r|+

√
−7 + 12|r| − 4r2), if 1 ≤ |r| ≤ 2,

0 otherwise
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Fig. 12 Area where a given lattice node x influences the structural mesh through velocity projection (Left). Area where
a structural node influences lattice velocities (Right)

Thus the coupling between a fluid and a structural node is effective only if the distance between the
two is smaller than 2∆x = 2 in lattice units. This projection is also performed to force structural velocities
onto the fluid mesh in a similar way. This is illustrated in figure 12

To test and validate the numerical method a small and simple ram-parachute model has been simulated.
This geometry had been previously tested in wind tunnel facilities. Figure 13 shows the visual comparison
between simulation results and wind tunnel pictures. During the test, using a 3D digital image correlation
technique described in [9], a measurement of the lower surface shape was conducted. Simulation results are
confronted to these measures in figure 14 and also to LS-Dyna ALE computations presented in the same
article.

There is a significant offset between experimental results and both simulations on the right side of the
canopy. According to [9], this is because the real Parachute is not symmetric, contrary to the geometry
processed during the simulations. Currently, the simulation has been conducted with uniform Cartesian
grids and without any wall model. However, given the Reynolds numbers at hand (from 5x105 to 2.5x106),
boundary layers on paragliders are in most cases fully turbulent. This is why without any turbulence model
and adequate wall grid refinement this method is not applicable to real paraglider flight configurations.
However, in the case of this simple parachute structure, the flow in the experiment is almost fully separated
which is easy to simulate even with under-resolved boundary layer treatment. Thus results presented above
are in a quite good agreement with wind tunnel measurement data.

5 Conclusion

A cost-efficient cloth model based on a mass-spring system with implicit time integration has been presented.
To avoid extensive memory costs, at each time step the integration is reformulated as an optimization prob-
lem which is solved with L-BFGS algorithm. Then few industrial applications on paragliders are presented,
showing that there is a promising future for numerical approaches in the paragliding industry. However
these results are not finely validated with experimental measurements yet. Then, first simulations using an
Immersed Boundary Lattice-Boltzmann method are presented. Cloth deformations are in good agreement
with wind tunnel measures for a simple parachute geometry. High fidelity computations of flow physics on
paragliders will however require extensive development to propose suitable boundary layer treatment. This
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Fig. 13 Visual comparison with pictures from
wind tunnel tests.

Fig. 14 Comparison between DGA-TA, Palabos and exper-
imental shapes of the Parachute.

is why current research is focusing on grid refinement techniques and turbulent wall models for IB-LBM.
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