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Abstract The overall procedure for building a reaction wheel is studied. A
mechanical analysis is carried out to build a satellite simulator that includes
four reaction wheels. A full characterization of a BLDC motor has been made,
including the main mechanical and electrical parameters, the linear and non-
linear models, the study of the saturation and finally the equations that drive
the motor selection. An algorithm for a continuous speed and position esti-
mation is proposed based on the measurements of the hall sensors. Then, the
speed and torque control of a BLDC motor is studied and evaluated. Addi-
tional considerations for controlling a satellite such as the introduction of the
Moore-Penrose Inverse Matrix are provided. This document also presents the
different components needed to build the PCB to drive and control the BLDC
motor in the core of the reaction wheel. We describe and explain the PCB to
control a single motor and four motors. Finally, We validate all the previous
results through extensive simulations.

Keywords Reaction Wheels · Control · Embedded system · Prototype ·
Electronics ADCS

1 Introduction

Reaction wheels are among the most common controllers of attitude for satel-
lites. During the past years, an increasing number of nanosatellites, or Cube-
Sats, have been sent into space.[1] Those nanosatellites can be used for educa-
tion, technology demonstration, or nano-scale technology. As with any other
kind of satellite, depending on the pointing accuracy and the requirements on
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the maneuvers, the satellite may have an active or passive attitude control. The
reaction wheels allow an active and accurate pointing accuracy independently
of the environment or the orbit.[2][3] The Table 1 shows the main reaction
wheels that can be found on the market today with a comparison of their
specifications.

Table 1: Comparison of several reaction wheels on the market today [Source : Website of
the companies]

Sinclair CubeSpace Blue Canyon Maryland
Interplanetary The LaunchLab Technologies Aerospace

Name RW-0.03 Medium Large RWP015 RWP050 MAI-400

Momentum [N ·m · s] 40 10.82 30.61 15 50 11.076

Max Torque [mN ·m] 2 1 2.3 4 7 0.635

Mass [g] 185 150 225 130 240 110

Size [mm]3 50, 50, 40 46, 46, 31.5 57, 57, 31.5 42, 42, 19 58, 58, 25 33, 33, 38

2 Mechanical design

2.1 Euler’s equations

We can express the derivative of an arbitrary vector A in the inertial frame

I knowing the rotating frame B and the rotation vector ω using dA
dt

∣∣I =
dA
dt

∣∣B + ω × AB . It is important to define properly every frame when the
problem involves rotation. In the present document, we consider only the ro-
tation around the center of mass of the satellite and not the translation at that
point. We have an inertial frame that stays fixed throughout the rotation of
the satellite, as well as a rotating frame attached to the rigid satellite. In the
equations used in this paper, the superscript refers to the frame of the vector.
The subscript refers to either the satellite or the reaction wheels. Knowing that
the angular momentum in the inertial frame varies when an external torque is

applied to the body such that Ts
ext = ḣ

I
, we can also know how the angular

momentum in the satellite-fixed frame evolves. The general form of the equa-
tion is given by Ts

ext = ḣ
s

+ ω × hs and it can be applied to any problem. In
our case, we can express the total angular momentum of the system including
the satellite and the reaction wheels. In the equation:

hs
s = Issω

s
s + hs

w, (1)

we see that the total angular momentum of the satellite is made up of two
parts; the rotation of the satellite’s body and the angular momentum stored
in the reaction wheels. Let us note that this equation does not depend on the
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number of the wheels. We can subsequently find that the external torques, the
angular momenta of the flywheels and their derivatives influence the rotation
speed of the satellite in an a priori non-trivial way. The following equation
shows a coupling between the rotation speed of the reaction wheels and the
rotation speed of the satellite.

Ts
ext = Issω̇

s
s + ḣs

w + ωs
s × Issω

s
s + ωs

s × hs
w. (2)

We can see from this equation that we will be able to apply a torque on
the satellite by varying the angular momentum of the reaction wheels. The
dynamics of the satellite’s body can be seen as a system with inputs such
as the external torques applied to the satellite, the angular momentum of the
wheels and their variation. The outputs are the rotation speeds of the satellite.
We understand at this point that by choosing properly the function hs

w(t) we
will be able to control the rotation speed ωs

s of the satellite and, in turns, its
attitude.

2.2 Kinematics

There exist many ways to represent the attitude of a body with respect to
a given frame. In aerospace engineering, mainly two ways are used to map
the attitude of the body onto a set of numbers. The first option is the Euler
angles. The attitude of the body is described by a combination of three rota-
tions around body-fixed or inertial axes. The physical meaning of the 3 angles
can be understood and read rapidly. However, for a specific set of rotations,
the body encounters a singularity where the rotation is ill-defined and can be
therefore numerically unstable. In this study, we will use quaternions instead.
The quaternions are 4-dimensional numbers that generalise the complex num-
bers. A rotation of amplitude α around an axis a can be written simply with
a quaternion as Q = [cos(α/2); a1 sin(α/2); a2 sin(α/2); a3 sin(α/2)]T . As a ro-
tating body has only 3 degrees of freedom, a single rotation can be expressed
with an infinite number of quaternions. Therefore, we will limit ourselves to
the sphere |Q| =

√
q20 + q21 + q22 + q23 = 1. Satisfyingly, a combination of rota-

tions can be expressed as the multiplication of the corresponding quaternions.
Quaternions make successive rotations easy to calculate. If we define Q as
the current attitude of the satellite, P as the desired attitude and E as the
relative rotation between the two former values, we find that PE = Q. If the
desired attitude is the unit quaternion, we have E = Q.[4] Finally, we can
understand that the same information is contained in its derivative as in the
rotation vector ωs

s. It is natural that there exists a relation between both. We
have indeed:

Q̇ =
1

2
Ω(ωs

s)Q (3)

where Ω is a 4× 4 matrix that depends only on the rotation vector ωs
s.

To complete the model of the satellite, we can introduce a simple model
of accelerometer and magnetometer. Indeed, the sensors onboard the satellite
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Fig. 1: Plan of the satellite used for the simulation. Q0 and ωs
s,0 are the initial conditions.

won’t indicate the attitude quaternion directly but measure the gravitational
and magnetic field. We will explain later how to utilize the output of the
accelerometer and magnetometer to control the satellite. Fig. 1 illustrates the
full model of the satellite’s body without the reaction wheels.

2.3 Motor

The key element of each reaction wheel is its motor. Understanding how the
motor works and can be modelled, allowing better selection of the one that fits
the need. An electric motor can be seen as an energy transformer. It converts
electrical energy into heat and kinetic energy.

2.3.1 Mechanical saturation

The power used by the motor Pelec,mot is converted into electromechanical
power Pem and Joule effect power PJ,mot with Pelec,mot = Pem + PJ,mot. The
power used by the motor can be approximated in steady state as Pelec,mot =
Umot · Imot where Umot and Imot are respectively the voltage applied to the
motor and the current going through its winding. The electromechanical power
of the motor can be expressed as Pem = Tem ·ωw where ωw is its rotation speed.
Tem is actually divided into two parts. The first part of the torque will be used
to counter balance the friction torque of the motor. We can find several ways to
estimate the parameters of the friction model in the literature.[5][6] The second
part of the torque will actually accelerate the flywheel. Finally, the Joule lost
power is simply PJ,mot = Rmot · I2mot where Rmot is the winding resistance.
Considering that the current going trough the motor and the output torque
are proportional in steady state Imot · kM = Tem, we can obtain the following
relation:

Umot

kM
= ωw +

Rmot

k2M
· Tem (4)
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It means that for a given Umot, we will have to choose between a high
rotation speed or an high torque. As Umot is bounded by the specification of
the motor, this line defines a saturation on the Tem for a given rotation speed
ωw. As the rotation speed will constantly change, the value of the saturation
will be dynamical. The higher the rotation speed, the lower the maximum
possible torque will be.

2.3.2 Thermal saturation

The power lost in the motor due to the Joule effect will change the temperature
of the motor. Assuming steady state, we see that the difference of temperature
between the outside and the inside of the motor is given by ∆T =

∑
iRT,i ·

PJ,mot =
∑

iRT,i ·Rmot ·I2mot where RT,i is a thermal resistance. Assuming that
we have a maximum difference of temperature ∆Tmax, we can also calculate
the corresponding torque with:

Tt,sat =
1

kM

√
∆Tmax∑

iRT,i ·Rmot
(5)

2.4 Requirements

To build a reaction wheel, it is also important to understand how the re-
quirements of the mission of the satellite are linked with the specifications of
the reaction wheel. Using a simple and unidirectional model for the satellite
(Is − J)θ̈s = −Tw(from [7]) where Tw = Tem − Tf , we can write the torque
necessary to perform a maneuver of θs during a time t∗. We have

Tw = 4
Is · θs
t∗2

.

During that maneuver, the rotation speed and angular momentum will in-
crease. We obtain therefore the angular momentum that the reaction wheel
must have available:

hw,max ≥ Is
θs
t∗

(6)

At this point, we have to emphasize that those equations are approxima-
tions. We consider that the desired torque will be applied instantly, which is
wrong. However, the equations can still give a preliminary knowledge on the
final specifications of the reaction wheels.

2.5 Speed estimation

To control the speed of the reaction wheel, we firstly need to estimate it. If
we use an encoder, the position of the motor is known relatively precisely at
any time. It becomes easy to estimate its rotation speed. However, when the
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commutation of the electric motor is performed thanks to three Hall-effect
sensors, the position is known only six times per revolution. But still, we need
to know the position and the rotation speed of the motor at any time. We can
then estimate those values at any time thanks to a Lagrange polynomial. We
can estimate the position as a first order or second order polynomial and we
obtain

θ̂l(t) = θi
t− ti

ti − ti−1
+ θi−1

t− ti−1
ti−1 − ti

=
(θi − θi−1)t− θiti + θi−1ti−1

∆T1

ω̂l(t) =
(θi − θi−1)

∆T1
(7)

ω̂w(t) = θi
(t− ti−1) + (t− ti−2)

(ti − ti−1)(ti − ti−2)

+ θi−1
(t− ti) + (t− ti−2)

(ti−1 − ti)(ti−1 − ti−2)

+ θi−2
(t− ti−1) + (t− ti)

(ti−2 − ti)(ti−2 − ti−1)
(8)

θ̂w(t) = θi
(t− ti−1)(t− ti−2)

(ti − ti−1)(ti − ti−2)

+ θi−1
(t− ti)(t− ti−2)

(ti−1 − ti)(ti−1 − ti−2)

+ θi−2
(t− ti−1)(t− ti)

(ti−2 − ti)(ti−2 − ti−1)

(9)

where θ̂l(t) and ω̂l(t) are the first order approximation and θ̂w(t) and ω̂w(t)
are the second order. θi and ti are the previous measured positions and asso-
ciated times. We see that the first order approximation follows the intuition
for the speed estimation.

2.6 Modelling

A complete analytical model of a BLDC motor is not trivial[8][9]. The model
should comprise the electronic commutation of the motor and should there-
fore include a Transformed Model Type d-q which is out of the scope of this
paper. Instead, we will use a numerical model for the simulations based on
MATLAB R©and Simulink R©. The electromagnetic torque of the motor can be ex-
pressed as Tem = eaia+ebib+ecic

ωw
, where ei and ii are the voltage and current in

each winding. We see from this equation that the torque and rotation speed
are in competiton with each other to draw electrical power from the motor.

3 Control

3.1 Linearization

The are several ways to get a linearized model of the BLDC motor with com-
mutation. First, we could use the equations from [8] and particularly the sec-
tion called ”Formal Linearization of BLDC Motor Drive” or we could use the
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complete description from [10]. However, a more straightforward way is to lin-
earize the entire non-linear numerical model of the motor. We will command
the motor with a step input of 24V, and we will take the rotation speed as the
output. The simulation will be run for a sufficiently long time. Then, the Sys-
tem Identification ToolboxTMof MATLAB R©/Simulink R©can provide the transfer
function that links the input to the output. To provide a step function as an
input is not an arbitrary choice. Indeed, the transfer function of a system is
the Laplace transform of its step response. The step response contains all the
frequency information of the system. The toolbox gives a 97.3% accuracy for
the linearized model, and we can therefore use it reliably.

4 Control of the BLDC motor

The control of the BLDC motor is well studied and quite mature in the liter-
ature. We can find articles such as [11] that use MRAC (Model reference adap-
tive control) or Particle Swarm.[12] Other articles speak about fuzzy PID[13].
In [9], an anti-windup is studied. The most straightforward and easy to im-
plement is to build a PID controller. We also want to be able to control the
reaction wheel in rotation speed and torque. The input of the motor is the
voltage applied. In reality, the voltage will be controlled thanks to the duty
cycle of the PWM. The output of the motor can be its rotation speed. The
input must never exceed the maximum voltage specified by the manufacturer.

4.1 Speed Control

The first step in designing the controller is to create a stabilizing inner loop
on the speed; this is a classical approach. We are able to choose the gain Kd
and the time constant τ of the diagram Fig.2.

Then, before adding an anti wind-up, we can choose the gain Ki and Kp
thanks to a pole placement. We will choose a damping factor ξ big enough to
avoid the overshoot and the saturation. However, the further we stray from
ξ =
√

2/2, the larger will be the settling time.
The best way to act on the settling time is to change the pulsation ωp

of the pole placement. The higher the pulsation, the faster the response will
be. The lower the pulsation, the more stable the system will be. However,
when the pulsation is higher, the system will be more influenced by the noise
because the gains are higher. Finally, we can choose the gain Kaw to enhance
the stability region of this system with saturations. In Fig.3, we can see the
Nichols/Bode plot as well as the time plot of the closed loop. We can see that
the margins are comfortable since we have an infinite gain margin, a phase
margin of 73.95◦ and a delay margin of 0.1189s. We acknowledge that the
time response is fast and precise. The system remains stable for a wide range
of input even if it reaches the saturation.

We can see this estimated speed as a first-order holder combined with a
band-limited noise. In Fig.4, we fixed the first-order holder to a sample time
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Tbl to quantify its influence on the speed estimation. The sample time has to
vary since the estimation is made faster when the motor rotates faster. We
can see in Fig.4 that when Tbl is too big, the estimation of the speed ω̂w is
not good and the speed of the motor ωw is far from the command. When
Tbl = 0.035s, the command varies rapidly but gives a precise rotation speed.
This is the limit of the method. We recommend not to run at low rotation
speed. We also see in Fig.5 that when the noise is significant, the estimation
of the rotation becomes less precise and the command becomes more erratic.

4.1.1 Torque control

There exist many ways to control precisely the torque of a BLDC motor such as
hysteresis current control, Direct Current Control (DTC)[14], Field Oriented
Control (FOC)[15] and so on. The two latter are examples of vector control. To
control precisely the torque, we must take advantage of a measure of the phase
current and voltage. The current varies quickly, and we need one of the best
MCUs (Microcontroller Unit) on the market to control the motor that way.
Besides, a torque controller that implements DTC or FOC is less robust than
our speed controller because it is more complicated. We chose a solution which
was simple and robust, but not very accurate. The satellite will command the
speed of the reaction wheel based on the command on torque thanks to:

ωw
c =

∫ t

0

Ĵ ·Tw
c dτ (10)

We won’t be as accurate as with a FOC or DTC controller as the controller
introduced a bias. However, this solution is easier to implement, and the con-
troller of the satellite can correct the lack of precision of this method. If we
notice that the precision is too low, the next prototype will have to measure
the current and to implement a vector controller. We link the precision of this
method with the precision of the estimation of the inertia Ĵ . We will esti-
mate the torque that the reaction wheels apply on the satellite thanks to the

following transfer function used in Simulink R©(ωc = 250rad/s and ξc =
√
2
2 )

T̂w
Jωw

(s) =
s · ω2

c

s2 + 2 · ξc · ωc · s+ ω2
c

(11)

This estimation of torque is used only during the simulations and is not em-
bedded.

4.2 Control of the full satellite

So far we have a model of the satellite with the reaction wheels. However,
the torques that the reaction wheels apply to the satellite are not necessarily
aligned with the principal axis of the satellite. Especially when we have more
than three reaction wheels, we should use a configuration where they are not
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aligned. If we want the satellite to survive the loss of a reaction wheel, it should
still be able to rotate in any direction. In reference [16], we have a complete
review of all the main configurations available. In particular, we have a list of
matrices Aw that can link the torque generated by the wheels to the torque
applied on the principal axis of the satellite:

Ts
w = AwTw

w (12)

whereAw is the reaction wheel configuration matrix defined as Aw = [a1,w a2,w a3,w a4,w]
whereby ai,w is the unit vector in the direction of the spin axis of the ith re-
action wheel. On the other hand, if we want to apply the torque Ts

w to the
satellite, we have to apply the torque Tw

w to the wheels Tw
w = A−1w Ts

w. Like-
wise, we can write that hw

w = A−1w hs
w and Ts

c = AwTw
c where Aw

−1 is the
pseudo-inverse of the non-square matrix Aw. To calculate the pseudo-inverse
of a matrix is equivalent to minimizing the norm of the vector Tw

w which helps
to avoid the saturation of the reaction wheels.

If we know the position of the accelerometer and magnetometer in the
structure of the satellite, it is possible to infer the attitude quaternion based
on the value displayed by the sensors. A singularity can appear at the poles,
where the gravitational force aligns with the magnetic field. The algorithm
introduced in the article [17] allows the inference of the attitude quaternion
without any trigonometric calculation. This algorithm has been implemented
in Simulink R©and shows encouraging results. We can summarize this estima-
tion function as Qmes = F(µ,γ) with g and µ respectively the gravitational
and magnetic field measured by the satellite.

4.2.1 Control of the satellite

We can see the spacecraft as a MIMO system where the input is the control
torque of the reaction wheels, and the outputs are the attitude quaternion and
the rotation vector. Thanks to Lyapunov[18], we can show that the following
attitude control stabilizes the satellite Ts

c = Kqe−Cωs
s where qe is the vector

part of the error quaternion, ωs
s is the rotation vector of the satellite and Ts

c

is the torque command on the satellite. The matrices K and C can be either
K = k1I3C = diag(c1, c2, c3) or K = k2

q33
I3C = diag(c1, c2, c3). In Fig. 6, we

show a schematic representation of the full model used for the simulations.
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5 Electronics and firmware

The electronics will have to perform several functions. In Fig. 7, we can see all
the components that have been used. In a classical PCB, there two are kinds
of lines. The first one carries power and the second one carries information.
Generally, we try to transmit information with low power. We can see that
the battery delivers a roughly constant voltage VPWR. However, the microcon-
troller needs a power supply of Vcc. The DC/DC converter will carry out the
conversion. The Hall-effect sensors need a supply power of Vhall. The level
charge pump will in turn provide this supply power. Then, the level shifter is
used to convert the voltage of a quickly varying signal. It guarantees that no
information is lost. A simple 9-DOF sensor is embedded on the PCB to allow
improved testing and qualification of the whole system. The microcontroller
will include the controller, provide the interface for communication with other
parts of the satellite thanks to the UART, interpret the information of the
Hall-effect sensors and send information about the commutation accordingly
to the driver.
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Fig. 7: PCB used to control a single motor

In Fig. 8, we propose a similar structure to control four BLDC motors.
The architecture is the same as for a single BLDC but the authority of the full
system is given to a FPGA. The FPGA is a logic gate circuit whose response
time depends only on the propagation speed of the information. The code
is not read and interpreted, it is propagated through the component. This
element was chosen over a classical MCU because of the large quantity of



12 Antoine Leeman

information that has to be transmitted to each sub-PCB. It has to include
the following services : commutation, controller, speed estimation and Pulse
Width Modulation. Finally, we decided to divide the electronics among five
different PCB to limit the consequences of a single fault.
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Fig. 8: PCB proposed to control 4 motors with improved reliability

6 Simulation

6.1 A single motor

We can simulate the behavior of the complete model of the reaction wheel
and the control loop. We can compare the linearized system with the full non-
linear models in Figs.9, 10 and 11. The efficiency is defined as η = Pmech

Ptot
. We

can see in those three figures that the linear model is a good approximation
of the full model. The biggest difference arises with the commanded voltage.
This difference is possibly due to the friction that is not modelled in the linear
model. We can also see that there is a small difference in the efficiency that
may be due to the same cause.

In Fig.9, we can see that the response time is quite fast for the torque. A
step in torque is translated into a ramp in rotation speed. The command
in rotation speed has a following error: we can see that the reaction wheel
cannot hold a high torque for a long time since the saturation on the speed
quickly moves closer. However, we reach a high enough angular momentum
with hw,max ≈ 18mN ·m · s. We can also see that the precision on the torque

is acceptable even with a very pessimistic estimation of Ĵ . This assumption
must be verified on the prototype in longer tests.
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Fig. 9: Torque and rotation speed of the closed-loop reaction wheel.

In Fig.10, we can see the three different saturations: mechanical, thermal and
on the voltage. We see that, even when the command is severe, the voltage is
far from reaching the saturation.
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Fig. 10: Saturation of the reaction wheel.

We can see from the Fig.11 that the efficiency is poor at low speed and low
torque. At the end of the maneuver, roughly 6J has been consumed, and a
bit more than 3J was useful for the mechanics. The motor works best when
the mechanical power needed is higher, which is a natural result. We can also
see that we have a peak of total power of 12W which is indeed close to the
saturation. The difficult command can explain this high power consumption.
We can still use the reaction wheel at low torque to consume less energy. The
temperature that the motor would reach in steady state conditions remains
low at any time (lower than 50K of difference).

We can see in the Fig.12 that we obtain good performance. Our motor
selection is correct because we can achieve the required maneuver in the given
time for a classical nanosatellite. Besides, the control loop of the satellite is
not optimized at all, meaning that we could achieve even better performance.
The command starts with a high torque which rapidly gives a high rotation
speed to the satellite. Then, the controller reduces the rotation speed thanks
to a torque in the opposite direction. We can also point out the quality of
the quaternion estimation method. The two lines are so close that we can
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Fig. 11: Efficiency of the linear and non-linear model of the reaction wheel and power and
energy consumed in the non-linear model.

barely notice the difference. The error on the estimation of the quaternion
is a maximum of 0.005. We can also see that the satellite reaches its desired
attitude smoothly. In Fig.13, we can see that the command is well below the
saturation of 24V for this maneuver. The power required for this maneuver is
quite high. The power required by the attitude control reached roughly 8W
when the torque is the highest. If we want to reduce the required power, we
must choose a slower maneuver. Concerning the efficiency of each reaction
wheel, we can see that it becomes noisy for the second half of the simulation.
Indeed, the estimation of torque created by the reaction wheel is not smooth.
However, the satellite doesn’t see those vibrations thanks to its high inertia
and the quality of the simulation is not reduced. We see that the command
voltage is not divided between the four reaction wheels. It depends on the
position of each reaction wheel.
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Fig. 12: The attitude quaternion, angular speed of the satellite, torque and rotation speed
of the reaction wheels for the simulation of the full satellite.

7 Conclusion

Starting from the requirements on the maneuver of the satellite, we were able
to build a 4-Reaction Wheel system. The project was divided into four main
parts.
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Firstly, we built a mechanical model of the satellite and the motor which is dif-
ficult without a thorough a thorough understanding of the dynamics of the sys-
tem as well as the electromechanical behavior of the BLDC motor. The model
includes many details such as the non-linearities of the motor. This model
allowed us to select an appropriate BLDC motor to meet the specifications.
During the process of mechanical modeling, different MATLAB R©toolboxes have
been used such as System Identification ToolboxTM, Aerospace BlocksetTM,
SimscapeTMPower SystemsTM, and SimscapeTMElectronicsTM. The model of
the motor is modular since it could be adapted to another BLDC motor with
different specifications. All in all, the process of selecting a BLDC based on
the requirements has become fast and accurate.

Secondly, we built the controller of the motor. The resulting controller is fast,
precise and stable. We started by linearizing the model of the motor. Then,
we added the PID and the anti-windup by carefully analyzing the temporal
and frequential behavior of the closed-loop. We showed that the linear model
was accurate, which allowed the acceleration of the design process of the PID.

Then came the design of the electronics component and the PCB. Building
a PCB allows us to verify that all the simulations are correct even with the
Processor-in-the-loop (PIL). Indeed, many projects may stop working because
of a wrong estimation of delay times or calculation accuracy. Eventually, the
plan of a reliable 4-motors PCB has been presented.

Finally, we ran the simulations of the reaction wheel alone. Thanks to those
simulations, we could validate that the linear model was correct and that the
controller kept the motor away from the saturation. The second part of the
simulation uses the linear model of the motor to perform real maneuvers for the
whole satellite that includes: the dynamical saturation of the BLDC motors,
the noise of the accelerometer and magnetometer, the navigation algorithm
that converts the data of the accelerometer and magnetometer into an attitude
quaternion (from [17]), the speed and torque controller of the BLDC motor,
the simple satellite controller, an estimation of the mechanical torque that the
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reaction wheels apply on the satellite and the detailed energy consumption of
each reaction wheel.
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