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Abstract

The presence of large-scale roll-like structures in turbulent plane Couette (C-) flow has been proven experimentally
and numerically in the last decades. This kind of flow is purely shear-driven. Curiously enough, these structures
are not present in pressure-driven flows such as turbulent plane Poiseuille (P-) flow. In this paper the large-scale
structures (LSS) in turbulent plane Couette flow are studied at the low friction Reynolds number Reτ = 125
through DNS in a channel domain. A stepped transition from turbulent plane Couette flow to turbulent plane
Poiseuille flow is covered in order to analyse the properties of the flow during this transition. The length and width
of these large-scale coherent motions are estimated 50h and 2.3h respectively, being h the semi-height of the channel
domain. It is proven that the streamwise LSS structures develop very-long counter-rotating rolls in the mean flow.
The presence of the rolls is linked to the distribution of Reynolds stress along the wall-normal direction.

Keywords: Numerical turbulence, DNS, Couette flow, Poiseuille flow

1. Introduction

Inside the wide subject of Fluid Mechanics there is a relevant branch, which studies the unsteady, irregular and
chaotic movement of the flow. This branch is called turbulence. Turbulent flows are present in most of our daily
life situations: from the fumes in a chimney to almost every aerospace engineering problem.

Broadly speaking, one can assess if a flow is turbulent by estimating its Reynolds number. This non-dimensional
number described in Eq. 1 compares the inertial forces (numerator) to the viscous forces (denominator) of the flow.
At low Reynolds numbers, viscous forces are dominant, developing a smooth flow known in Fluid Mechanics as
laminar. On the contrary, at high Reynolds numbers the predominant inertial forces produce chaotic eddies and
flow instabilities; that is, a turbulent flow.

Re =
ρuL

µ
=
uL

ν
(1)

where:

• ρ is the density of the fluid
[
kg/m3

]
• u is the velocity of the fluid with respect to an external observer [m/s]

• L is a characteristic linear dimension [m]

• µ is the dynamic viscosity of the fluid [kg/ (m · s)]

• ν is the kinematic viscosity of the fluid
[
m2/s

]
In Fluid Mechanics it is often relevant to estimate the velocity field as well as the flow characteristics in a given

2D or 3D domain in order to gain a better understanding of a case. These parameters are nowadays calculated
through the Navier-Stokes (N-S) equations, which were developed in the beginning of the XX century. In Eq. 2
the Navier-Stokes equations for an incompressible case are depicted. They are complemented with the continuity
equation, which for incompressible flow breaks down to ∇ui = 0.
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(2)

Note that i and j are subscripts referred to Einstein summation convention. Hence, Eq. 2 contains in fact three
different equations, one for each dimension.

The resolution of Navier-Stokes equations for a turbulent flow is still these days a great challenge due to their
complex non-linear form. Three different schemes have been developed with regard to their level of resolution
precision: RANS, LES and DNS.

DNS (Direct Numerical Simulation) is employed in this study in order to calculate the velocity fields of turbulent
plane Couette and Poiseuille flows. In this scheme the N-S are solved numerically without any approximation.
Hence, its main advantage is the high precision of the results, which is specially convenient in scientific studies.
On the other hand, the computational cost is very high and dependent on the simulation Reynolds number. This
limitation allows these days only to simulate up to moderate Reynolds numbers in very simple geometries, usually
called canonical domains. For more information about the resolution methods of the Navier-Stokes equations, the
interested reader is referred to the classic book of Pope [1], Part Two.

Since the seminal paper of Kim, Moin and Moser [2] turbulent channel flows have been widely studied through
direct numerical simulation (DNS). In this domain the turbulence regime is defined by the friction Reynolds number,
Reτ = uτh/ν, where uτ is the friction velocity, and h is the semi-height of the channel.

Channel Poiseuille flows have been studied at higher friction Reynolds numbers than Couette flows due to the
existence of very large-scale roll-like motions (LSS) extending along the domain. This fact results in the necessity
of long and wide channels in order to capture the LSS. Hence, C-flows are more computationally expensive than
P-flows at the same Reynolds number.

Couette flow is a classical problem of primary importance in the history of fluid mechanics. It is widely studied
among students, as laminar C-flow develops an exact solution for N-S equations. Couette flow describes the flow of
a viscous fluid in the space between two surfaces. Generally the bottom surface remains static and the top surface
moves with a constant velocity. Hence, the flow is driven by the shear force acting on the fluid due to the relative
movement of the upper wall. A pressure gradient in streamwise direction is normally not applied.

Despite being one of the simplest viscous flows, it retains much of the same physical characteristics of more
complicated boundary-layer flows. Additionally, it takes place in diverse industrial processes and devices, such as
extrusion, power generators and pumps. [3]

On the other hand, Poiseuille flow is a classical problem of fluid mechanics too. It describes a steady flow
between two parallel plates at a fixed distance. However, the main difference is that both walls are at rest, and the
flow movement is caused by an external negative pressure gradient in streamwise direction. This flow is therefore
considered a pressure-driven flow. Poiseuille flow is widely employed in the industry to study pipeline flow.

As stated in the abstract, in this paper a transition from turbulent plane C-flow to P-flow is studied through
DNS simulations in a channel domain. Simulations are done at Reτ = 125. Pure Couette flow simulations at this
low Reynolds number are therefore comparable to other simulations made by Bernardini et al. [4] and Tsukahara
et al. [5], among others.

The aim of this study is to observe and measure the dimensions of the large-scale structures (LSS) at C-flow and
during the transition. Additionally, we try to understand how flow characteristics change when LSS are present by
comparing with a pure P-flow.

The structure of the paper is as follows. In the second section, the simulation domain with its boundary
conditions as well as the simulation cases are presented. In the third section, LSS are introduced and described by
depicting streamwise velocity fields from the simulation results. In the fourth section, vortices in diverse domain
regions are compared among simulation cases. Finally, the fifth section contains the summary and conclusions.

2. Simulation cases and boundary conditions

The stepped transition from pure C-flow to pure P-flow was performed in a very long computational channel.
The transition cases (C-P flow) have both pressure gradient and a relative top wall movement in comparison with the
bottom wall. The domain dimensions are Lx = 128πh, Ly = 2h, and Lz = 6πh, being x, y, z the streamwise, wall-
normal and spanwise direction, respectively. Their corresponding velocity components are U, V, and W. Defining
the average operator 〈·〉xi as

〈φ〉xi
=

1

Lxi (t1 − t0)

∫ t1

t0

∫ Lxi

0

φdxi dt (3)
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the value of 〈φ〉x can be thought as the mean in x of the time-averaged field of parameter φ. Statistically averaged
quantities are denoted by an overbar, φ = 〈φ〉xz whereas fluctuating quantities are denoted by lowercase letters,
i.e., U = U + u. The semi-height of the channel is referred as h. Note that wall-normal dimension extents from −h
(bottom wall) to h (top wall).

A graphical description of the domain is depicted in Figure 1. Furthermore, a small channel of Lx = 16πh,
Ly = 2h, and Lz = 6πh was used in order to observe the influence of the channel domain.

The use of a very long channel stems as a conclusion from previous studies at similar Reynolds numbers, in which
shorter domains were employed. Bernardini [4] studied a pure C-flow at Reτ = 167 in a channel (12πh× 2h× 4πh).
Tsukahara [5] performed a similar study at Reτ = 126 in diverse channels up to (64h× 2h× 4πh). Despite in these
studies relevant conclusions were stated, due to the length of the domain the LSS could not be measured properly.

(a) (b)

Figure 1: a) Descriptive 3D view of a channel domain. b) Schematic 2D view of a channel domain. The flow moves from left to right
along X direction. In case of C-flow the top wall moves in streamwise velocity. In both cases the domain dimensions are not scaled.

The boundary condition set in stream- and spanwise limiting walls is periodicity. This kind of boundary condition
does not affect directly the velocity components of the flow. However, it is proven that periodical boundaries increase
the coherence of LSS if the length of the domain is too short [6]; that is, clearly shorter than the LSS length. See
Figure 2h.

On the other hand, in the wall-normal direction no-slip and no-penetration boundary conditions are present. In
C-flow the top wall moves additionally in streamwise direction at a constant velocity Uw. In P-flow both walls are
at rest.

The flow can be described by means of the momentum and mass balance equations. These equations are solved
using the LISO code, which has successfully been employed to run some of the largest simulations of turbulence [7],
[8]. In wall units, the simulation resolution in wall-normal direction ∆y+ varies from 0.83 at the wall, up to 2.3 at
the centerline. The wall-parallel resolution in physical space for x and z is ∆x+ ' 8.4 and ∆z+ ' 4.3.

The characteristics of the simulation cases are summarized in Table 1. The employed nomenclature describes the
percentage of C-flow and P-flow of each case; that is, C10P00 is pure C-flow. In each case the same bulk Reynolds
number, based on the bulk velocity Ub, is conserved.

Case Line Remτ Resτ Nx Ny Nz TUb/Lx Tuτ/h
C10P00 132 132 6144 151 576 8.9 188
C08P02 · · · · · · 133 83 6144 151 576 10.9 235
C06P04 – – – – 135 13 6144 151 576 11.2 243
C04P06 — ·— 137 69 6144 151 576 19.4 430
C02P08 142 102 6144 151 576 16.8 384
C00P10 147 147 6144 151 576 11.1 264

Table 1: Parameters of the simulations. Two different Reynolds numbers are given depending on the local uτ at the moving (third
column) or the stationary (fourth) wall. Nx, Ny , Nz are the collocation points in physical space. The last two columns denote the
computational time span while statistics were taken in wash-outs (Ub/Lx) and eddy turn-overs (uτ/h). T is the computational time
spanned by those fields. Line shapes given in the second column are used to identify the cases through all the figures of the present
paper.
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3. Large Scale Structures (LSS) in C-flow

The presence of large scale structures in the flow is assessed by observing and measuring the velocity fields in
the domain. As stated in previous studies ([5], [9], [10]) the LSS occupy almost all the wall-normal dimension of
the domain, and extend along the streamwise direction.

Therefore, we compare first the streamwise velocity on a plane in the channel center of the small domain. The
comparison is made along the transition cases from pure P- to C-flow. For the sake of clarity, for each case the
mean and instantaneous U fields are shown. Second, the time and streamwise average 〈U〉x is plotted in a YZ plane
for each transition case; through these images we can observe their wall-normal extent. Third, through analysis
tools the length and width of the LSS is calculated during the transition.

In Figure 2 filtered streamwise velocity fields at instantaneous simulation times are depicted on the left. As
one can read in each caption, these figures start from case C00P10 (pure Poiseuille) on the top to C10P00 (pure
Couette) on the bottom. The filtering algorithm employed is described in [11], Section 4.6. The filtering threshold
is the standard deviation among all streamwise velocity values in the selected wall-parallel plane. See that now one
can differentiate between three zones of colour:

• Yellow: high-speed regions, where local streamwise speed is above the standard deviation.

• Light blue: neutral regions, where local streamwise speed is inside the range of the standard deviation.

• Dark blue: low-speed regions, where local streamwise speed is below the standard deviation.

On the right column, the mean streamwise velocity of each case is depicted without filtering. This magnitude
helps to find patterns visible after averaging many instantaneous fields.

As we can see in Figure 2, in pure Poiseuille the filtered streamwise velocity structures (Figure 2a) arrange in
a total random organization. The filtered field is composed by short and scattered structures. So, we can see that
low-speed and high-speed regions come closer and get away with no clear arrangement. Furthermore, the same lack
of organization of the streamwise structures is observed when comparing with the mean streamwise velocity field
(Figure 2b).

In instantaneous case C04P06 (Figure 2c) it is observed for the first time that structures of the same kind start
to organize creating larger structures than the observed in previous cases. This tendency is confirmed once the
mean flow C04P06 in Figure 2d is compared. Nevertheless, it is seen later in Figure 3 that LSS are not developed
yet.

(a) C00P10. Instantaneous (b) C00P10. Mean

(c) C04P06. Instantaneous (d) C04P06. Mean

Figure 2: Filtered streamwise velocity wall-parallel planes. y/h = 0.065, channel center.
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(e) C06P04. Instantaneous (f) C06P04. Mean

(g) C10P00. Instantaneous (h) C10P00. Mean

Figure 2: Filtered streamwise velocity wall-parallel planes. y/h = 0.065, channel center.

In instantaneous case C06P04 (Figure 2e) the level of arrangement of the filtered structures increases, observing
bigger structures than the initial ones at C00P10 (Figure 2a). By comparing with the mean C06P04 field (Figure
2f) one notices that the structures became stronger (brighter colours) than in the previous cases. However, clear
structures extending along the channel streamwise dimension are not developed yet.

Case C10P00 (pure Couette) shows another scenario. Here the filtered streamwise structures (Figure 2g) have
completely arranged creating strong structures that touch both streamwise sides of the domain. This feature is
clearly noticed in the mean C10P00 field (Figure 2h), in which each kind of structure is perfectly organized. An
alternating pattern is described: high-, neutral and low speed regions. Additionally, all structures touch both
limiting sides in streamwise direction.

The next step is to observe this transition in a YZ plane, in which a streamwise and temporal average 〈U〉x
has been performed. This is depicted in Figure 3 for the same cases as in Figure 2. Notice that now there is no
instantaneous field depicted, and the small channel domain was employed.

Figure 3: Time- and streamwise-averaged images of u/uτ for the cases, top to bottom, C00P10, C04P06, C06P04 and C10P00
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Figure 3: Time- and streamwise-averaged images of u/uτ for the cases, top to bottom, C00P10, C04P06, C06P04 and C10P00

In the pure P-flow (C00P10) an alternating pattern of high- and low-speed structures near both walls is observed.
However, the averaged streamwise velocity in the channel center is around zero. This occurs due to the random
distribution of structures observed in Figure 2a.

As soon as we reach intermediate states C04P06 and C06P04, the structures increase its height from the
stationary wall (bottom) to the moving wall (top).

Finally, at pure Couette C10P00 the alternating pattern of streamwise velocity structures occupy the whole
height of the channel, and the whole length (Figure 2h) in the small channel. From this result stems the necessity
of employing a very-long computational domain in order to catch the length of LSS at the simulated Reynolds
number. Simulations were run therefore in a very-long computational domain as described in Table 1.

Up to now we notice that LSS forming counter-rotating rolls are present up to case C06P04. In Gand́ıa-Barberá
et al. [8] the presence of rolls was linked to the distribution of the Reynolds stress 〈uv〉xz. The authors stated that
as soon as the Reynolds stress crosses the zero value, these structures fade away. From C06P04 to C10P00 the
Reynolds stress 〈uv〉xz holds a negative value along the wall-normal dimension.

Before getting deeper into dimension analysis, in an interesting study Lee and Kim [12] described for a pure
Couette flow in a similar domain the same alternating distribution as in Figure 3. The authors compared this
distribution with a vector field composed by 〈v〉x and 〈w〉x.

This idea was later employed in a similar study performed in a still unpublished paper by Alcántara et al. [13].
In this work the authors studied a pure thermal Couette flow at Reτ = 476 in a domain of size (Lx, Ly, Lz) =
(16πh, 2h, 6πh). The same wall-normal distribution of LSS as in Figure 3 is observed for a time- and streamwise
averaged u velocity, named as 〈u〉x. This is depicted in Figure 4.
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Figure 4: Time- and streamwise averaged temperature field in a YZ plane. White and green lines represent contours of positive and
negative 〈u〉x, respectively. (〈v〉x , 〈w〉x) vector field is represented by arrows.

Notice that in each high- or low-speed structure two counter-rotating velocity rolls touch each other. The
rotation axis of each roll is located in the transition between high- and low-speed structures in the channel center.
The black box depicted in Figure 4 encloses a pair of 〈u〉x structures, and a roll in its center. By comparing this
finding with Figure 2h one can realize that the averaged velocity field shows long counter-rotating rolls that extend
along the streamwise dimension of the domain.

On the other hand, notice that the thermal distribution in a C-flow (Figure 4) describes a pair of hot (red) and
cold (blue) regions at each velocity structure. At a given roll these thermal structures describe a symmetry with
respect to the origin of every (v, w) vortex. This symmetry is described for the first time in Alcántara et al. [13].

In order to measure the length and width of the streamwise structures that form these rolls a two-points
correlation in the channel center is employed in each transition case. The correlation is applied in streamwise and
spanwise direction in order to measure the length and width of the counter-rotating rolls, respectively.

Two-points correlation Rij is a mathematical tool commonly employed in the literature in order to find repeating
patterns, such as the presence of a periodic signal obscured by noise, or identifying a fundamental frequency.

The possible values for Rij lie in the range [−1, 1], with 1 indicating perfect correlation and −1 indicating
perfect anti-correlation. Do not confound anti-correlation (−1) with no correlation between values, in which Rij
becomes 0. For more information, the interested reader is referred to [1] Section 6.3, or to [11] Section 5.3.

(a) (b)

Figure 5: Colors as in Table 1. Two-points correlation of U evaluated at the channel center in a) streamwise and b) spanwise direction.
The length of the domain is 128πh.

The length of the counter-rotating rolls is measured from Figure 5a as half of the distance between two consecutive
minima of the curve. For the pure C-flow case it is measured as 50h, approximately. This measure could not be
extracted in previous studies ([10], [5]) due to the insufficient length of their domain.

The length of the LSS gets shorter as soon as the Couette contribution is reduced; that is, from case C08P02.
This feature can only be observed by using a very-long channel domain. Finally, the different minima cannot be
truly appreciated beyond C06P04, as we also stated from Figure 2.

In an interesting study M. Lee and Moser [9] performed two-points correlations in a box of length 100πh
for Couette flows at Reτ = 220 and Reτ = 500. For the former case, the authors calculated that streamwise
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structures have a length of 25πh; nevertheless, for the latter case the authors could not measure the structures. As
a consequence, the authors conclude that the length of LSS is highly dependent on friction Reynolds number.

Recalling the introduction, this dependency puts forward a relevant difficulty since for measuring LSS at higher
Reτ larger domains will be needed. By increasing Reτ and the domain dimensions, the simulation may become
impossible even for current supercomputers.

On the other hand, two-points correlation of U in spanwise direction (Figure 5b) shows that the width of LSS
in pure C-flow is 2.3h, approximately. This value stays in accordance with the results in M. Lee and Moser [9],
Avsarkirov et al. [14] and Kraheberger et al. [15]. However, it differs from Tsukahara et al. [5] and Pirozzoli et
al. [10]. In these studies the authors estimate smaller values: 1.3h and 1.7h, respectively. The main reason for this
discrepancy is the width and length of their domain, which are not sufficient to simulate a full pair of rolls.

Finally, Avsarkirov et al. [14] demonstrated that the LSS width remains constant for pure Couette flows from
Reτ = 125 to Reτ = 550 in a domain of size (Lx, Ly, Lz) = (20πh, 2h, 6πh). This is also confirmed by M. Lee and
Moser [9] in a larger domain at Reτ = 500. Kraheberger et al. [15] obtained a similar width of the rolls in a pure
C-flow at Reτ = 1000.

Consequently, we conclude that the width of the rolls remains independent of the friction Reynolds number from
Reτ = 125 to Reτ = 1000, if an appropriate domain size is employed.

4. Analysis of vortex structures

To conclude the analysis of the flow characteristics when LSS are present, the vortex structures are identified
and measured for each simulation case. The reason for studying the vortex distribution is to find patterns related
to each kind of coherent structure, which are mainly low and high velocity structures.

The vortex identification method used was developed by Chong et al. [16], and it is usually known as ∆ criterion.
This method is based on a local analysis of the velocity gradient tensor ∇~u at each point of the domain. If at a
domain point ~x the discriminant ∆ of the eigenvalues of ∇~u is larger than a given threshold, the identification
method classifies that point as a vortex point. For detailed information about the process underlying the method,
the reader is referred to Chakraborty et al. [17], in which ∆ criterion along with other identification methods is
extensively described.

The constant threshold proposed by Chong et al. [16] was later defined as problematic when applied to wall-
bounded turbulent flows as in this study. Del Álamo et al. [18] reported the defect of considering a constant
threshold in wall-bounded turbulence, owing to the inhomogeneity of the flow in the wall-normal direction. This
fact complicates the comparison of data from different wall distances when a uniform threshold is used. When the
threshold is chosen to visualize properly the vortices of the near-wall layer of the present channels, very few of them
are observed in the outer region. Conversely, when the threshold is lowered to visualize the vortices of the outer
layer, the near-wall region becomes confusingly cluttered with vortex tubes. This behaviour is proven to worsen
with increasing Reynolds number.

Consequently, Del Álamo et al. [18] proposes a threshold that varies with wall distance with regard to the
standard deviation of ∆ over wall-parallel planes. See Equation 4. This threshold is higher near the walls than in
the channel center; that is, the method is more restrictive with near-wall vorticity.

∆ (~x) > α · (∆′2)
1/2

(4)

where α is the percolation limit, which has a constant and different value for each simulated flow.
For the sake of simplicity the algorithms for vortex identification are not explained in this paper. The interested

reader is referred to [11], Chapter 4. The percolation limit for each C-P flow is presented in [11], Section 6.1.
The vortex population of each simulation case is analysed in diverse domain regions: near stationary wall,

channel center and near moving wall. The aim is to observe how the presence of LSS affects the vortex population.
In this process the vortex points are first identified, second grouped forming vortex clusters, and third the volume

of each cluster is measured. All the required algorithms are described in [11], Chapter 4.
The results are processed by employing probability plots of the vortex volumes at each region. This is depicted

in Figure 6.
In the near-stationary wall region, all the distributions collapse perfectly. See Figure 6a. This stays in accordance

with the fact that streamwise velocity structures located near the stationary wall are analogous among all cases
[11], Section 5.2. We conclude that there is a link between the vortex and streamwise structures in this domain
region.
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(a) (b)

Figure 6: Colors as in Table 1. Accumulative probability plot of vortex volumes a) near the stationary wall, b) near the moving wall
and c) in the channel center. Vortex volumes are divided by h3. Horizontal axis is in logarithmic units.

(c)

Figure 6: Colors as in Table 1. Accumulative probability plot of vortex volumes a) near the stationary wall, b) near the moving wall
and c) in the channel center. Vortex volumes are divided by h3. Horizontal axis is in logarithmic units.

In the near-moving wall region (Figure 6b), transition cases show bigger vortices than pure C- or P-flow at a
given probability. Curiously enough, pure C- and P-flow distributions collapse perfectly. Recalling the streamwise
structures in this region ([11], Section 5.2), we observe that in transition cases rounded structures predominate,
specially in C06P04 case. However, pure cases consist on meandering striped structures.

In the channel center (Figure 6c) a good collapse is achieved until vortex volumes reach 0.04h3. This fact
indicates that the channel center has also a great population of small vortices in all cases. However, it is more
interesting to observe the results in Figure 6c once the collapse is lost. Pure Poiseuille flow reaches the maximum
accumulative probability in a region near 0.1h3. Then, each transition case in a stepped way reaches higher volumes
in the channel center. And finally, cases C08P02 and C10P00 collapse at the end of the curves in a region around
h3.
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5. Conclusions

A set of transition cases from a pure turbulent Poiseuille flow to a pure turbulent Couette flow were presented
in a small and in a very-long channel domain. All simulations were performed at Reτ = 125.

Streamwise velocity patterns forming large scale structures were detected in pure Couette and transition flows
with relevant Couette contribution up to C06P04. These LSS are specially visible in the mean flow. Their presence
is also linked to the distribution of the averaged Reynolds stress 〈uv〉xz.

By comparing with the remaining velocity components in an averaged flow, it is observed that LSS conform
counter-rotating rolls that extend along the streamwise direction of the channel. In the small domain these rolls
occupy the whole length.

In order to measure the rolls, two-points correlations were employed in stream- and spanwise directions in a
very-long channel domain. The length and width of the rolls at Reτ = 125 are 50h and 2.3h, respectively. From
similar studies it is discovered that their length is highly dependent on the friction Reynolds number. Nevertheless,
their width shows no dependency on this parameter.

The last step of the analysis was to identify and measure the vortex population in diverse regions of the domain;
concretely, near each wall and in the channel center. The vortex volumes in each region show an agreement with
the streamwise structures present in each case. When counter-rotating rolls are present in the mean flow, the vortex
volumes in the channel center can reach up to h3.
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