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Abstract

In this article, aircraft configuration analisys is shown. The comparation between different
geometries is developed for three operations. Transport operation, in this flight conditions
the plane flights in straight line, with high speed and medium altitude aproximately 500 m.
Surveillance operation, the aircraft describes a circular flight with low altitude (100 m) and
low velocity. Finally, humanitarian aid operation is evaluated, for this operation, low alti-
tude, high velocity and small radius of turn is required. Along the article advantages and
disadvantages for the different operations of each configuration are shown. In addition, an
analisys of eigenvalues is conducted, evaluating also a variation on the center of gravity
position and its effects in stability.

Nomenclature

α Angle of attack
γ Flight slope
∆Ec Kinetic energy variation
δp Percentage of battery voltage
ηp Popeller efficiency
θ Propeller geometry angle
λi Adimensional induced velocity
λz Adimensional axial velocity
µ Friction coefficient
ρ Density
φ Induced angle
Ω Propeller angular velocity
AE Aerodynamic efficiency
b Number of blades
CD Drag coefficient
CL Lift coefficient
CQ Moment coefficient
CT Thrust coefficient
D Drag
Froz Friction force on the wheels
FT Propeller resistance force
g Gravity acceleration
Kv Engine angular velocity coefficient

L Lift
m Mass
n Load factor
P Engine power
P2 Climbing power
PTO Take off power
Q Propeller moment
R Propeller radius
RTO Take off distance
RL Landing distance
Sw Wing surface
T Thrust
v Velocity
V3 Landing velocity
Vb Battery voltage
Vi Induced velocity
VLO Lift off velocity
Vz Axial velocity
Vstall Stall velocity
We Empty weigth
x Propeller radial adimensional position
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Introduction

Unmanned aerial vehicles (UAVs) are a hot
topic in the Aerospace Industry and are cur-
rently experiencing important developments.
Their versatility has a great number of advan-
tages in some flight operations as transport,
surveillance and military missions. UAVs in-
dustry is creating a high number or high-
skilled jobs, while positively contributing to
the general economy. As they can be manu-
factured in sizes, weights and shapes much
different than the typical manned vehicle,
some of the tendencies used to design other
aircraft might not be applicable. Therefore,
it is important to establish criteria for their
design in order to increase their efficiency and
improve their performance.

In the following article, the design and sta-
bility criteria for different configurations of
electric and low cost UAVs is shown, for a
maximum take-off weight of around 7 kg. The
influence of geometric parameters is analysed
in different operations: transport, surveil-
lance and humanitarian aid. Aerodynamic
and propulsive parameters are analysed for
the different configurations and flight opera-
tions. Finally, a comparison of the configura-
tion an their advantages is shown. In order
to stablish the previous criteria, a computer
tool of fast calculation will be developed.

For the mathematical model of the aero-
plane, USAF DATCOM [1] will be scanned
and applied. Furthermore, xflr5 [5] is used
in order to compare aerodynamic efficiency
and pathlines of each configuration. In ad-
dition, for the thrust model, blade element
theory is utilised. These theories are applied
to the computer tool. The article also in-
cludes weight analysis of the aircraft. To es-
timate their structural weight similar aero-
planes will be used. Aircraft data is obtained
from UPC Venturi [3] and UPC Trencalòs [4]
(both teams from Air Cargo Challenge com-
petition held in Zagreb in 2017). With these
aeroplanes a relation between maximum take-

off weight and operating empty weight will be
obtained. Regressions will give an estimated
value of operating empty weight. In addition,
a more accurate calculus of the weight will be
done. For this calculus, carbon fibre mono-
coque structure of 0.55 mm of thickness will
be considered, two engines of 350 g and elec-
tronic equipment of 600 g. Electronic equip-
ment includes weight of batteries and autopi-
lot. Maximum take off weight of every air-
craft is the same 6.9 kg. Payload weight is the
difference between maximum take-off weight
(MTOW) and operating empty weight.

Studied configurations

Along the article three different configura-
tions will be studied. Aircraft configurations
are compared in order to determine the most
appropriated one for each operation. As said
before, empty weight is compared with Air
Cargo Challenge planes. The regression curve
obtained from the competition planes is:

We = 1.217 + 2.9978Sw (1)

• Configuration 1: double tail configura-
tion, as shown in Figure 1. This config-
uration is studied because it is a known
geometry. Many planes shows it. It is
also a compact configurations and it is
supposed to be an stable geometry.

This configuration has an empty weight
of 4.2 kg assuming carbon fibre struc-
ture. And aproximately 4.1 kg assuming
previous regression.
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Figure 1: Configuration 1 sketch.

• Configuration 2: Canard configuration
with stabilisers in wing tips, as shown
in Figure 2. With this configuration it
is expected to obtain the most efficient
aircraft because of the contribution of
canard in the generation of lift. Ca-
nard also offers some protection against
stall. Nevertheless, the longitudinal sta-
bility of canard aeroplanes is much more
difficult than conventional configuration.
For this reason, it will require a more
complex control systems to drop payload
in humanitarian aid missions.

Figure 2: Configuration 2 sketch.

This geometry has 4.3 kg of empty
weight assuming a carbon fibre mono-
coque. However, it weights 4.2 kg if re-
gression is used.

• Configuration 3: Three surface configu-
ration with double tail, as shown in Fig-
ure 3. The objective of this configuration

is to obtain canard configuration advan-
tages while avoiding its stability prob-
lems. This geometry has extra capac-
ity to move its centre of gravity without
turning it to an unstable configuration.

Figure 3: Configuration 3 sketch.

Assuming a carbon fibre monocoque
structure, this geometry has an empty
weight of 4.3 kg. This structural weight
is higher than previous configurations
due to the number of lifting sur-
faces. Nevertheless, applying regression
a weight of 4.2 kg is obtained.

In the following calculation carbon fiber
weight is assumed in order to know exact po-
sition of the center of gravity.

Operation diagram

In order to establish wing dimensions and
choose engines it is important to represent the
operation diagram. In this figure it is shown
power weight ratio versus wing load. The op-
eration diagram represents the different oper-
ations of flight: cruise, take-off, climb, land-
ing and turns.

• Cruise: force equilibrium is imposed:

L = mg (2)

T = D (3)
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Equation 3 is divided by equation 2.

T

m
= g

D

L
(4)

Assuming that T = Pηp
v

:

PTO

m
=
vg

ηp

1

AE

PTO

P
(5)

Observing Equation 16 it can be shown
that to reduce the power needed in cruise
flight it is important to increase both the
aerodynamic and propulsive efficiencies.
Equation 16 is a simplified expression
from a blade element thrust model. In
the following computations, calculated
power is obtained from blade element
theory.

• Take-off: to calculate this operation is
needed to make an energy balance:

∆Ec = (T −D − Froz)RTO (6)

where Froz = µ(mg − L) and velocity is
set as a medium value between zero and
lift off velocity VLO = 1.2Vstall and thrust
is obtained from blade element method.

PTO

m
=
vTO

ηp

(
v2LO

2RTO

− µL

m
+
D

m
+ µg

)
(7)

• Climb: force equilibrium is imposed.

T = D +Wγ (8)

L = W (9)

Dividing Equation 8 by Equation 9:

T

mg
=
D

L
+ γ (10)

And assuming simplified expression for
thrust:

PTO

m
=
gv

ηp

(
1

AE
+ γ

)
PTO

P2

(11)

To reduce the power needs in a constant
slope climb is important to increase the
aerodynamic and propulsive efficiencies.

• Landing: is calculated with an energy
balance.

∆Ec = (−D − Froz)RL (12)

obtaining the following expression for
the curve:

m

Sw

=
ρv2l (CL · µ− CD)

2µg − v23
RL

(13)

• Turns: the force equilibrium is solved:

L = mgn (14)

T = D (15)

Dividing Equation 15 by Equation 14,
the curve equation is obtained.

PTO

m
=
vng

ηp

1

AE

PTO

P
(16)

Wing load is optimised in order to be as
high as possible. For the different configura-
tions the following diagrams are obtained.

• Geometry 1:
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Figure 4: Operation diagram of geometry 1.
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• Geometry 2:
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Figure 5: Operation diagram of geometry 2.

• Geometry 3:
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Figure 6: Operation diagram of geometry 3.

Theoretical background

In the article, USAF DATCOM [1] is uti-
lized to obtain the aerodynamic coefficients.
DATCOM take use of semi-empirical proce-
dures to calculate aerodynamics. With these
coefficients it is possible to obtain aerody-
namic moments and forces, which are utilized
in equations of mechanics applied to a body
with six degrees of freedom: force equations
(33, 34 and 35), moment equations (39, 40
and 41), Euler equations (46, 47 and 48) and
finally kinematic equations (49, 50 and 51).

Linearizing the previous equations it is pos-
sible to obtain movement eigenvalues of the
aircraft. The eigenvalues are associated with
the different modes of movement:

• Short period: it is a longitudinal oscil-
latory mode with high damping and fre-
quency.

• Phugoid: it is a longitudinal oscillatory
mode with low damping and frequency.

• Dutch roll: it is a lateral-directional os-
cillatory mode.

• Roll subsidence mode: it is a lateral-
directional non-oscillatory mode with
high damping.

• Spiralling: it is a lateral-directional non-
oscillatory mode with low damping.

The previous flight modes determine the
stability of the aeroplane and they must be
studied in order to design an aircraft which
does not need complex autopilot systems.

On the other hand, to model the propul-
sive system, blade element theory has been
utilized. In this theory aerodynamics of each
section of the blade are calculated. Then 3D
corrections are added to the model to correct
tip effects. A sketch of the section is shown
in Figure 7.

Figure 7: Blade element sketch.

As shown in Figure 7:

θ = α + φ (17)

where φ represents the induced angle of the
velocity, which is produced by the rotation of
the propeller.
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φ = arctan

(
Vi + Vz

ΩR

)
(18)

Nondimensionalising the parameters the
following expression is obtained:

φ = arctan (λi + λz) (19)

where,

λi =
Vi

ΩR
(20)

λz =
Vz

ΩR
(21)

Thrust is generated by lift and drag coeffi-
cients of the blade according to the following
equation:

T = L cosφ − D sinφ (22)

The rotation resistance of the blade is also
calculated. This force is used to obtain the
power needed to move the propeller:

FT = Lsinφ + D cosφ (23)

and torque:

Q = r (Lsinφ + D cosφ) (24)

Nondimensionalising thrust and torque:

cT =
T

ρ π R4 Ω2
(25)

and

cQ =
Q

ρπ R5 Ω2
(26)

Torque coefficient is equal than power co-
efficient. For this reason is possible to know
the power required by the rotation. To solve
blade element method it is needed to know
the induced velocity in each section of the
blade. Blade element thrust must be equal
to the conservation of linear momentum. In-
duced velocity is modified to include 3D ef-
fects:

λi =
dcT

4xF (λi + λz)
(27)

being,

F =
2

π
acos

(
e−f

)
(28)

f =
b

2

1 − x

xφ
(29)

This way it is possible to obtain a expres-
sion of thrust and power as a function of
nondimensional velocity. In order to calcu-
late the nondimensional velocity is needed
to know the rotational velocity of the blade.
This velocity is obtained directly from the
specifications of the engine. Rotational ve-
locity is proportional to the applied voltage.
Rotational speed is obtained in equation 30.

Ω = KvVbδp (30)

being δp the control of the battery voltage
and the control of aircraft thrust. Voltage
needed to maintain required thrust and power
applied on the propeller gives a value of cur-
rent intensity. The intensity utilised to give
power to the engine determines the battery
consumption. The aircraft analysed in this
article is able to give 2200 mA h. This fact
means that the battery can maintain a cur-
rent of 2.2 A during 1 h. The autonomy of
the aircraft in flying condition is determined
making use of previous parameters. Range is
calculated from previous calculus multiplying
autonomy by flight velocity.

Operations comparison

In this section studied operation compara-
tion is shown. The first item to compare
is flight domain. It is important to know
the conditions in which every configuration
can flight. Flight domain is calculated estab-
lishing force equilibrium in both axis (two-
dimensional problem).
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L = W (31)

D = T (32)

Comparing previous configurations the fol-
lowing diagram is obtained.
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Figure 8: Flight domain comparison.

It can be shown that canard configuration
is able to have lightly higher flight conditions.
This fact is an important advantage for mil-
itary aeroplanes and can be decisive in com-
bat maneuvers. Moreover, for civil configu-
rations there is not an important difference
between studied configurations. This fact is
due to higher aerodynamic efficiency of ge-
ometry 2. In Figure 9 a comparison (without
fuselage influence) between studied configu-
ration is presented.

Figure 9 shows that canard configuration
presents higher aerodynamic efficiency. For
this reason, in Figure 8 geometry 2 has the
highest flight domain. Canard configuration
has higher aerodynamic efficiency because of
the reduction of induced drag generated by
the lifting elevator (canard). Studied config-
uration are shown in Figure 21.

Operations must be determined in order to
study plane behaviour in these conditions. In
this section are evaluated three flight con-
ditions: transport (velocity 30 m s−1, alti-
tude 500 m), surveillance mission (velocity
15 m s−1, altitude 100 m, radius 500 m) and
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Figure 9: Comparison of aerodynamic effi-
ciency for different wing configuration. Val-
ues obtained with xflr5 [5].

Figure 10: Human aid trajectory.

humanitarian aid (velocity 20 m s−1, altitude
100 m, radius of the curves of 10 m dropping
500 g of payload before the first curve), in
this mission the aircraft draws the trajectory
shown in Figure 10.

Another objective of the article is to re-
duce the complexity of autopilot systems
for this reason is important to design an
stable aircraft. To evaluate stability of
the aeroplane both longitudinal and lateral-
directional eigenvalues are analysed. This
eigenvalues are evaluated for every point of
the flight domain. Results are plotted in the
appendix of the article. In the following ta-
ble, eigenvalues are evaluated for flight oper-
ations.
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Transport
Geometry 1 Geometry 2 Geometry 3

-10.20+18.00i -12.72+16.82i -13.68+21.03i
-10.20-18.00i -12.72-16.82i -13.68-21.03i
-0.18+0.38i -0.18+0.34i -0.19+0.36i
-0.18-0.38i -0.18-0.34i -0.19-0.36i

-17.06 -13.54 -16.09
-0.38+3.25i -1.58 -0.26+2.18i
-0.38-3.25i 1.12 -0.26-2.18i

0.02 0.03 0.004

Table 1: Eigenvalues for transport flight.

It can be seen that geometry 1 and 3
present a similar behaviour. For geometry
3, longitudinal modes are more damped be-
cause the higher number of horizontal sta-
bilizers. Three configurations are lateral-
directional unstable. Nevertheless, geometry
1 and 3 only presents an unstable mode (spi-
ralling) which is slow and can be corrected by
a human pilot or a simple automatic control
system. Spiralling mode means that plane
is unable to correct its rolling motion and it
is aligned with relative wind loosing altitude
and drawing a spiral motion.

On the other hand, geometry 2 presents
two unstable modes and it needs an autopilot
to be controlled.

Eigenvalues are also evaluated in surveil-
lance operations:

Surveillance
Geometry 1 Geometry 2 Geometry 3

-5.32+9.18i -6.64+8.63i -7.14+10.81i
-5.32-9.18i -6.64-8.63i -7.14-10.81i
-0.09+0.83i -0.09+0.74i -0.10+0.79i
-0.09-0.83i -0.09-0.74i -0.10-0.79i

-9.25 -7.34 -8.79
-0.55+1.52i -1.13 -0.37+0.95i
-0.55-1.52i 0.33+0.29i -0.37-0.95i

0.12 0.33-0.29i 0.04

Table 2: Eigenvalues for surveillance flight.

As happened before, both geometries 1 and
3 show similar modes. These configurations
present an unstable lateral-directional mode,
spiralling. Moreover, geometry 2 presents un-
stable dutch roll. This instability happens
because lateral stability is much higher than
directional, which means that aircraft will re-
store rolling motion faster than it corrects its
side-slip so it passes flight level.

Finally, eigenvalues for humanitarian aid
are evaluated. To know the behaviour of the
aeroplane in this operation it is needed to
analyse both straight flight and curves.

On the first hand, straight flight eigenval-
ues are evaluated:

humanitarian aid: straight flight
Geometry 1 Geometry 2 Geometry 3

-7.07+12.20i -8.81+11.41i -9.46+14.24i
-7.07-12.20i -8.81-11.41i -9.46-14.24i
-0.13+0.62i -0.12+0.55i -0.13+0.59i
-0.13-0.62i -0.12-0.55i -0.13-0.59i

-11.95 -9.47 -11.24
-0.40+2.17i -1.18 -0.27+1.45i
-0.40-2.17i 0.66 -0.27-1.45i

0.07 0.13 0.05

Table 3: Eigenvalues for humanitarian aid
flight.

Aeroplane configurations behaviour is the
same than the one obtained in transport op-
erations. It show weak lateral-directional sta-
bility in geometry 2.

On the other hand, eigenvalues from curves
of 10 m of radius are analysed. This curves
have a small radius, because the plane must
drop the payload and come back as fast as
possible. Eigenvalues are shown in Table 4.

In Table 4 it can be seen that geometry 1
is the most stable in closed curves. Moreover,
geometry 2 and 3 present instability in dutch
roll mode.
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humanitarian aid: curves
Geometry 1 Geometry 2 Geometry 3

-3.67+13.32i -5.49+11.54i -6.16+14.82i
-3.67-13.32i -5.49-11.54i -6.16-14.82i
-0.05+0.66i -0.04+0.64i -0.05+0.65i
-0.05-0.66i -0.04-0.64i -0.05-0.65i

-14.94 -11.20 -14.49
-0.15+0.64i -2.69 -3.09
-0.15-0.64i 0.57+0.53i 0.24+0.74i

-3.25 0.57-0.53i 0.24-0.74i

Table 4: Eigenvalues for humanitarian aid
flight.

Another important fact of the comparison
of previous geometries is the influence of the
variation of the centre of gravity in the stabil-
ity of the aircraft. The analysis will check the
value of the eigenvalues if the centre of grav-
ity moves 30% of the wing chord forward and
backward. This analysis is made for 20 m s−1

and 100 m of altitude.

In Tables 5 and 6 it is shown that geome-
try 3 is the most stable against changes on the
centre of gravity of the aeroplane. This fact
makes this configuration the most appropri-
ated for dropping humanitarian aid. In Table
5 is shown that geometry 3 stays stable with
the variation of the center of gravity, on the
contrary, geometry 1 and 2 become unstable.
On the other hand, in Table 6 every geometry
is stable. When the center of gravity moves
forward, airplane becomes more stable and it
is necessary to know the deflection of the lon-
gitudinal stabilizer. For geometry 1 elevator
deflection is increased in 1.71o. In geometry 2
is needed to deflect 2.03o more than original
center of gravity position. Finally, for geom-
etry 3 canard stays in the same position and
elevator is deflected 3.71o from original posi-
tion. It is important to observe that geometry
3 has two degrees of freedom. Canard can be
deflected to correct elevator’s deflexion.

Centre of gravity movement: backward.
Geometry 1 Geometry 2 Geometry 3

-17.91 -13.68 -9.23+4.16i
4.23 -3.93 -9.23-4.16i

-0.18+0.80i -0.66 -0.14+0.30i
-0.18-0.80i 0.27 -0.14-0.30i

-11.94 -9.48 -11.22
-0.39+2.18i -1.20 -0.26+1.46i
-0.39-2.18i 0.65 -0.26-1.46i

0.07 0.14 0.05

Table 5: Eigenvalues for movement of the
centre of gravity: 30 % backward.

Centre of gravity movement: forward.
Geometry 1 Geometry 2 Geometry 3

-8.35+20.03i -9.47+16.44i -10.58+19.24i
-8.35-20.03i -9.47-16.44i -10.58-19.24i
-0.13+0.65i -0.13+0.62i -0.13+0.63i
-0.13-0.65i -0.13-0.62i -0.13-0.63i

-11.97 -9.45 -11.26
-0.42+2.16i -1.17 -0.29+1.44i
-0.42-2.16i 0.67 -0.29-1.44i

0.08 0.12 0.06

Table 6: Eigenvalues for movement of the
centre of gravity: 30 % forward.

Assuming that maximum deflection for
both canard and elevator is 10o, maximum
forward center of gravity movement is shown
in Figure 7. And maximum variation of the
center of gravity is presented on the Table 8.

Centre of gravity: limit position.
Geometry 1 Geometry 2 Geometry 3

−1.36 cw −0.9 cw −1.42 cw

Table 7: Maximum forward center of gravity
position.
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Maximum variation of
the center of gravity

Geometry 1 Geometry 2 Geometry 3

1.76 cw 2.48 cw 6.21 cw

Table 8: Maximum variation of the center of
gravity.

In Table 8 it is shown that geometry 3
presents higher variariation of the center of
gravity. In this geometry the position of the
center of gravity can change much more than
in geometry 1 and 2. For this reason, airplane
3 has greater advantages for dropping loads
than aircrafts 1 and 2.

Moreover, the higher number of degrees of
freedom of the geometry 3 permit to increase
aerodynamic efficiency of the airplane for a
defined flight conditions.

In addition, it is analysed the influence of
wing load and propeller diameter to obtain
the better performance in operations. For ge-
ometry 1 the following results are obtained:

MTOW/S
w
 (kg/m2)

D
p(m

)

 

 

4 6 8

0.2

0.25

0.3

0.35

R
an

ge
 (

km
)

15

20

25

30

Figure 11: Geometry 1: Transport perfor-
mance.
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Figure 12: Geometry 1: Surveillance perfor-
mance.
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Figure 13: Geometry 1: humanitarian aid
performance.

It is shown that to increase the range and
endurance of the aeroplane it is needed to
decrease the propeller diameter inside some
limits of thrust. For the other configurations
results are similar:
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Figure 14: Geometry 2: Transport perfor-
mance.
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Figure 15: Geometry 2: Surveillance perfor-
mance.
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Figure 16: Geometry 2: humanitarian aid
performance.
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Figure 17: Geometry 3: Transport perfor-
mance.
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Figure 18: Geometry 3: Surveillance perfor-
mance.
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Figure 19: Geometry 3: humanitarian aid
performance.

It can be seen that geometry 2 presents bet-
ter performance than geometry 1 and 3. This
fact is due to canard configuration. Canard
is a lifting surface which helps in the gener-
ation of lift, reducing main wing lift and in-
duced drag.For this reason geometry 2 works
better in transport and surveillance missions.
Nevertheless in humanitarian aid mission the
selection of the configuration depends on the
wingload and propeller diameter, as shown in
Figure 20.
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Figure 20: humanitarian aid: geometry selec-
tion.

It can be shown that for maximum dis-
tance of humanitarian aid geometry 2 must
be used. This fact is the result of its higher
aerodynamic efficiency. Nevertheless, for low
propeller diameter geometry 3 has a better
behaviour due to the great number of degrees
of freedom.

Conclusions

It is conclude that different aircraft configu-
rations can be used in order to perform trans-
port, surveillance and humanitarian aid mis-
sion.

The most efficient configuration is ca-
nard. However this kind of geometry has
weaker longitudinal stability (high posibility
to destabilize the airplane in case of moving
the center of gravity backward and low posi-
bility of moving it foreward in comparison
with three surface configuration) and will re-
quire autopilot if the centre of gravity changes
during flight. To solve this problem three sur-
face configuration can be used. This geom-
etry presents higher efficiency than conven-
tional configuration but similar behaviour. In
addition, it also offers strong longitudinal sta-
bility and centre of gravity can move much
more than in canard and conventional air-

craft without changes in eigenvalues. More-
over, this configuration can also be used in
order to increase aerodynamic efficiency be-
cause of the aditional degree of freedom.
However, three surface configuration requires
more complicated geometry and mechamism.
For these reasons, it is less usual than con-
ventional geometry.

On the other hand, conventional aircraft
offers good stability and similar performance
than other configurations. It is less efficient
but is well known for this reason it is usualy
used in UAVs.

Finally, the selection of the geometry de-
pends on the operation of the airplane. For
high performance operation the better config-
uration is canard configuration. For variable
center of gravity position, three surface con-
figuration is the most stable. If the airplane
has a defined operation without variation of
the center of gravity and it is not flying in
the limits of the flight domain, conventional
geometry is recomendable because of the ge-
ometry simplicity.
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Appendix

Flight equations

m
(
V̇ + qV α− rV β

)
= T + Fx −mg sinθ (33)

m
(
V̇ β + V β̇ + rV − pV α

)
= Fy +mg cosθ sinφ (34)

m
(
V̇ α + V α̇ + pV β − qV

)
= Fz +mg cosθ cosφ (35)

Fx = −1

2
ρV 2S ′′ (cD − αcL) (36)

Fy =
1

2
ρV 2S ′′cY (37)

Fz = −1

2
ρV 2S ′′ (αcD + cL) (38)

ṗ =
Izz
A
L+

Ixz
A
N +

Ixz (Ixx − Iyy + Izz)

A
pq +

Izz (Iyy − Izz) − I2xz
A

rq (39)

q̇ =
1

Iyy
M +

Izz − Ixx
Iyy

pr +
Ixz
Iyy

(
r2 − p2

)
(40)

r′ =
Ixx
A
N +

Ixz
A
L+

Ixz (Iyy − Ixx − Izz)

A
rq +

Ixx (Ixx − Iyy) + I2xz
A

pq (41)

A = IxxIzz − I2xz (42)

L =
1

2
ρS ′′b′′V 2cl (43)

M =
1

2
ρS ′′c′′V 2cM (44)

N =
1

2
ρS ′′b′′V 2cN (45)

p = φ̇− ψ̇ sinθ (46)

q = θ̇ cosφ+ ψ̇ cosθ sinφ (47)

r = ψ̇ cosθ cosφ− θ̇ sinφ (48)

∂x

∂t
= u cosψ cosθ+v (cosψ sinθ sinφ− cosφ sinψ)+w (−cosψ sinφ+ cosφ sinθ sinψ) (49)
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∂y

∂t
= usinψ cosθ+ v (sinψ sinθ sinφ− cosφ cosψ) +w (−cosψ sinφ+ cosφ sinθ sinψ) (50)

∂z

∂t
= −usinθ + vcosθ sinφ+ wcosθ cosφ (51)

Pathlines: wing configurations

Figure 21: Pathlines (obtained with xflr5 [5]): geometry 1 (top), geometry 2 (midle), geom-
etry 3 (bottom).
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Eigenvalues geometry 1

NOTE: Blank map means that the eigenvalue only presents real part.
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Figure 22: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 23: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 24: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 25: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.

Lateral-directional
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Figure 26: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 27: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 28: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 29: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.

18



Eigenvalues geometry 2

NOTE: Blank map means that the eigenvalue only presents real part.

Longitudinal
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Figure 30: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 31: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 32: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 33: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.
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Figure 34: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 35: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 36: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 37: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.
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Eigenvalues geometry 3

NOTE: Blank map means that the eigenvalue only presents real part.

Longitudinal
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Figure 38: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 39: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 40: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 41: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.

Lateral-directional

v(m/s)

z(
m

)

 

 

0 10 20 30
0

0.5

1

1.5

2
x 10

4

R
e 

(s
la

t1
)

−16

−14

−12

−10

−8

−6

−4

v(m/s)

z(
m

)

 

 

0 10 20 30
0

0.5

1

1.5

2
x 10

4

Im
 (

s la
t1

)

0

0.2

0.4

0.6

0.8

1

Figure 42: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 1.
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Figure 43: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 2.
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Figure 44: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 3.
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Figure 45: Real part (right) and imaginary part (left) of eigenvalue lateral-directional 4.
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Range and autonomy: Geometry 1

Transport operation
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Figure 46: Autonomy (left) and range (right) of geometry 1.

Surveillance operation
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Figure 47: Autonomy (left) and range (right) of geometry 1.
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humanitarian aid operation
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Figure 48: Maximum distance of human aid operation.

Range and autonomy: Geometry 2

Transport operation
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Figure 49: Autonomy (left) and range (right) of geometry 1.
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Surveillance operation
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Figure 50: Autonomy (left) and range (right) of geometry 1.
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Figure 51: Maximum distance of human aid operation.
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Range and autonomy: Geometry 3

Transport operation
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Figure 52: Autonomy (left) and range (right) of geometry 3.
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Figure 53: Autonomy (left) and range (right) of geometry 3.
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Figure 54: Maximum distance of human aid operation.
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