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Classical Lambert’s problem is an astrodynamical problem implemented in industrial and scien-
tific software to solve this specific two-boundary value problem under the hypothesis of a Keplerian
dynamic. To design optimal trajectories or to compute initial guesses for least-square orbit determi-
nation problems, it must be solved and implemented. Earlier works develop numerical and analytical
techniques to solve the classical Lambert’s problem in the mono-revolution and multi-revolution cases.
On the one hand, this results in fast-computing and efficient methods that are employed in state-of-
the-art software. On the other, the dynamical model is simplistic and the actual final position of
the satellite differs by several kilometers once the revolution number increases. A way to obtain a
more close-to-reality solution is to consider a more complete dynamical model by taking into account
orbital perturbing forces such as aerodynamic drag and perturbing gravity potential. As previously-
introduced algorithms do not consider a perturbed dynamics, this paper develops an optimization
algorithm based on Taylor Differential Algebra to solve the perturbed Lambert’s problem. The opera-
tions defined in the algebra allow the computation of the polynomial approximation of the final state
propagation as a function of the initial state to be computed. This polynomial expansion is used to
reduce the final position error as in thrust-region optimization. A wide range of numerical simulation
is performed in order to have a clear view of the algorithm performances. Test cases have been chosen
between the main orbit families (LEO, MEO, GEO, HEO and GTO) in order to have a complete and
clear overview of the developed algorithm. Moreover the influence of the polynomial order is studied
and a preference expansion order is selected to maximize the performance index. Obtained results
are promising and further developments are proposed to increment algorithm performances.

I. Introduction
The classical Lambert’s problem (CLP) is a well-known problem in astrodynamics consisting in deducing the initial velocity

of the spacecraft vin knowing the initial position rin, the final positions r f in and the time interval ∆t between the two. This
two-point boundary value problem has fascinated scholars since the 18th century and has been intensively threated in most of
the classical astrodynamics reference books [1–3]. A recent advance in high-performing computation of the CLP solution has
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Figure 1 Difference in propagation between the CLP and a PLP (modified from [4]).
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As the spacecraft motion is perturbed, the CLP solution does not provide a satisfying initial velocity vin to be used in initial
orbit determination (IOD) solver, such as the ones developed at CNES. This is due to the non-linear behavior that the Equations
of Motion (EOMs) show for long propagation time or highly non-linear orbits, such as Tundra or GTO, with error between the
perturbed final position and the CLP final position greater than 104 km. Moreover, as a close-to-reality initial guess for IOD
algorithms is needed, it seems straightforward to consider a more complex and complete problem: the perturbed Lambert’s
problem (PLP). The schematic representation of this situation is shown in Figure 1 where problem geometrical definition and
notations are shown.
The main limitation in solving the PLP is due to the computation of dynamical model derivatives to be used in the iterative
optimization algorithm. Software-implemented solutions are based on finite difference approximation of the dynamical model
Jacobian or, when possible, on the analytical derivatives computation. On the one hand, the first approach can be used with all
types of dynamical model but it implies a high computation time as the EOMs must be solved multiple times in order to compute
the Jacobian. On the other hand, the second technique allows the direct gathering of the derivative values but it requires to infer
analytically the derivative expressions. Recently, an alternative approach has been developed that is based on the computation -
in a computer environment - of the Taylor expansion of a function up a to a given order: Taylor Differential Algebra (TDA).
Therefore, this method allows the exact computation of all derivatives up to a desired order as if an analytical gathering had
been performed and by keeping computational time limited. The first TDA application has been the computation of parametric
maps in optical systems where Taylor expansions of particle trajectories have been gathered [6]. Recent work has used TDA
techniques in space mechanics to solve parametric equations or to take into account uncertainty propagation [4, 7–12].
In this paper, an iterative optimization strategy has been developed in a Differential Algebra (DA) framework to solve the
PLP. The optimization can be classified among the shooting iterative methods with a thrust-region approach. After a brief
introduction of the TDA, the main elements of the PLP solver are presented: the considered dynamical model, the optimization
algorithm and the chosen initial condition. Finally, the numerical results obtained from a large number of test cases are presented
and commented on in order to understand the algorithm performances.

II. Taylor Differential Algebra

a; b

a × b

× ⊗

ā ⊗ b̄

ā; b̄
FP

FP

(a) Commutative diagram for real numbers. FP is the floating
point number conversion operation.
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F; G
T E
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(b) Commutative diagram for functions. T E is the Taylor
expansion conversion operation.

Figure 2 Commutative diagrams for a generic operation × and a generic conversion operation (modified from [6])

In this section a general overview of the TDA is presented. Interested readers can consult References 6 and 8 for further details.
The basic idea of the TDA is to extend the algebraic operation on numbers to function in a computer environment. In a strict
sense, neither numbers nor functions can be exactly represented in a computer because of the finite amount of information
that a machine manages. From a real number point of view, they are approximated by the floating point numbers in a way
that the diagram in Figure 2a commutes either by firstly applying the operation × on the real number and then converting the
result to floating point numbers or by firstly converting to the floating point numbers and then applying the adjoint operation
⊗. Analogously, a commuting diagram, in Figure 2b, can be defined with a generic function in such a way that the Taylor
expansion coefficients extraction and the operation × on function commutes thanks to the definition of an adjoint operation
⊗. Moreover, by introducing multiplication, scalar multiplication and addition, the defined mathematical structure turns into
a commutative algebra and, by equipping the algebra of a analytic differentiation and integration, the formal definition of a
differential algebra is established [6].

III. The Dynamical Model
In this section the dynamical model used in the initial condition propagation is presented. The EOMs consider the central

acceleration of the planet, the atmospheric drag and the perturbation due to a non-spherical body [13]:

Ür = −
µ

|r |3
r +

1
2

CD A
m

% |vrel | vrel + ∇rΦ where % = %0 e−
(|r |−re )

h (1)
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where µ is the planetary gravitational parameter, r is the position vector, CD is the satellite drag coefficient, A is satellite
effective drag area, vrel is satellite relative velocity with respect to the atmosphere, m is the satellite mass, % is the atmospheric
density, %0 is the sea-level reference density, re is the Earth equatorial radius, h is the scale height, ∇r is the nabla operator in
Cartesian coordinates and Φ is the perturbation gravity potential.
Moreover, the perturbation gravity potential is expressed as follows [14]:

Φ = −
µ

|r |

[
nzo∑
k=2

(
re
|r |

)k
JkPn(sin ϕ) −

nzo∑
k=2

nte∑
m=1

(
re
|r |

)k [
Cm
k cos mλ + Sm

k sin mλ
]

Pm
k (sin ϕ)

]
(2)

where (ϕ, λ) are the satellite geocentric latitude and longitude. The integer nzo is the zonal truncation degree and the integer nte
is the tesseral truncation order. The parameters Jk, Cm

k
, Sm

k
denote the zonal and tesseral coefficients of the spherical harmonic

expansion and their numerical values are chosen accordingly with the GRIM4S4 gravity model. Finally, Pk(x) is the Legendre
polynomial of degree k and Pm

k
(x) is the associated Legendre polynomial of degree k and order m.

From a computational point of view, the perturbations are computed by considering some important assumptions:
• The satellite geocentric latitude and longitude are computed by considering a flattened Earth with an equatorial radius re
and a flattening parameter f .

• The atmosphere is spherically symmetrical and rotates at the same angular rate as the Earth.
• The atmospheric density parameters are constant in time.
• The perturbation gravity acceleration is computed with the algorithm given in [15].

The constant numerical values are reported in Table 1.

m [kg] A
[
m2] CD [−] %0

[
kg m−3] h [m] ae [km] f [−] nzo, nte [−]

1000 10 2.2 1.225 7000 6378.138 3.353 10−3 6
Table 1 Constants numerical value for the PLP force model.

IV. DA Thrust-Region Algorithm
In this section the optimization algorithm is exposed and commented on. The main idea is based on the possibility of

extracting information from the Taylor expansion of the initial velocity vin as a function of ∆rn, i.e. the difference at step n
between the non-Keplerian final position at step n rn

f innk
and the targeted final position r f in. Firstly the initial conditions, i.e.

the known initial position rin and the initial velocity at step n vnin, are initialized in a DA framework:{
[rin] = r̄in + δrin[
vnin

]
= v̄nin + δv

n
in

(3)

where the bar superscript denotes the constant part of the expansion and δ its derivatives up to order k.
Secondly, a TDA non-Keplerian propagation is performed to find the DA map between the non-Keplerian final position at step n
and the initial conditions. Successively ∆rn is gathered:[

∆rnf in

]
=

[
rnf innk

]
−

[
r f in

]
= ∆r̄nf in +M∆rn

f in

(
δrin, δv

n
in

)
(4)

whereMg ( f , h) is the mapping of g as a function of f and h and the δg is the variation of g with respect to the polynomial
center. The map is then augmented with the δrin-identity map in order to allow the inversion:[

δ∆rn
f in

δrin

]
=

[
M∆rn

f in

Irin

] [
δrin

δvnin

]
⇒

[
δrin

δvnin

]
=

[
M∆rn

f in

Irin

]−1 [
δ∆rn

f in

δrin

]
(5)

The obtained map is the evaluated for δrin = 0 and ∆rn
f in
= ∆α r̄

n
f in
= α∆r̄n

f in
where α is the chosen step and ∆r̄n

f in
is the

constant value of the Taylor polynomial expansion computed as the distance between r f innk and r f in. Thus:[
δrin

δvnin

]
=

[
M∆rn

f in

Irin

]−1 [
∆α r̄

n
f in

0

]
(6)

By considering the second row and combining it with Equation 3:

v̄n+1
in = v̄nin +Mδvnin

(∆αr
n
f in, 0) (7)
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The optimization is finally stopped if the norm of the final position difference
���∆r̃nf in��� is smaller than a given tolerance ε or if a

maximum imposed number of iteration nmax is reached.

A. Convergence Radius Estimation and Step Choice
In the previously exposed algorithm a function computing the required step is called on and, for the sake of clarity, this

subsection aims to describe the algorithm used to evaluate the optimization step.
In order to find the convenient step, an estimation of the Taylor series convergence radius must be performed. In order to find an
estimator, the following procedure has been developed based on the error estimation of a multi-variable polynomial found in [7].
The main idea is based on the estimation of the convergence radii for all the variables in the polynomial and then approximating
the global convergence radius with the smallest of all these values by considering a safety factor to avoid overestimation due to
approximations. Let P(x) be a multi-variable polynomial that is factorized for each variable xj ∀ j ∈ [1, n] as follows:

P(x) =
k∑

m=0
xmj Q j,m(x1, . . . , xj−1, xj+1, . . . , xn) (8)

where Q j,m is a polynomial not depending on the variable xj . By denoting the coefficient qj,m of the polynomial Q j,m, the
norm of each polynomial Q j,m is the sum of the absolute value of all the coefficients:

Sj,m =
∑

qj, m ∈Q j, m

��qj,m

�� (9)

From the computation of Sj,m, a series
(
Sj,m

)
m∈[1, k] is generated.

Furthermore, as exposed in [7], the polynomial norm that has just been defined decays exponentially by increasing the number
m because of the Taylor’s Theorem. From this consideration the value of Sj, k+1 can be inferred by logarithmic regression.
Form this polynomial norm, the radius of convergence associated with the j th variable and the mth term of the series is gathered:

%mj =
1

m
√

Sj,m

(10)

Successively, the convergence radius associated with the j th variable is estimated to be smallest value among the last two
convergence radius estimations [16]:

%j = min
{
%kj , %

k+1
j

}
(11)

By computing the value of %j for all the j the Estimated Trust-Region (ETR) is deduced. The ETR is an ellipsoid centered in
the polynomial center providing information about the thrust region in each direction.

ETR

Pfinnk

Pfink

ECTR
ECRTR

Actual evaluation

Required evaluation

Figure 3 Sketch of the step choice in 2 dimensions.

The measure of the global convergence radius is computed by considering the minimal value among all the %j :

% = min
j

{
%j

}
(12)

From this definition the Estimated Circular Trust-Region (ECTR) is inferred. The ECTR is the largest hypersphere contained in
the ETR. Finally, in order to have a conservative estimation of the convergence radius, a safety factor η is added to contract
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the ECTR - recommended value interval is η ∈ [0.2, 0.6]. This final hypersphere is labeled Estimated Circular Reduced
Trust-Region (ECRTR). The step is then computed:

α = η
%

|xeval |
(13)

where xeval is the evaluation point. In Figure 3 a 2D example of the exposed procedure is shown.
A final remark must be made: the present algorithm is used only if the polynomial degree k is greater than 1 as the constant
term of the series is not used for the logarithmic regression. In a linear case, the estimation is simply given by:

% = min
j

{
%1
j

}
(14)

Moreover, in case of a Taylor polynomial vector of size v, the procedure must be repeated for all the polynomials and the global
convergence radius is computed as the smallest value among the v Taylor models. Thus:

% = minj, l

{
%k
j, l
, %k+1

j, l

}
if k > 1

% = minj, l

{
%1
j, l

}
otherwise

(15)

where %m
j, l

is the estimated convergence radius associated with the l th model, the j th variable and the mth coefficient of the
factorization.

V. Optimization Initial Condition
In this section the initial condition for the PLP solver is expounded. Two type of initial conditions are considered:
1) The first optimization initial condition is the solution of the CLP between the initial position rin and the final position

r f in. It is computed with the Izzo’s method [5] and labeled from now on vink .
2) The second optimization initial condition, labeled v′ink , is the solution of the CLP between the initial condition rin and

the non-Keplerian final position at the first step r1
f innk

. Both CLP solutions are computed with the Izzo’s method.
The vector v′ink is considered as the default optimization initial condition and, only in case of not convergence, the first
optimization initial condition is considered. In Figure 4 the difference between the two optimization initial conditions is shown.
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Figure 4 Difference between the two considered optimization initial conditions, i.e. vink (in red) and v′ink (in green).

VI. Simulations
The expounded method has been tested on several orbits in order to understand its features and to circumscribe its validity.

The performed section is organized as follows: firstly an overview of the chosen orbits to test is expounded and secondly
numerical results are presented.

A. Test Cases
The considered test cases are listed in Table 2 where the orbit is defined by providing the classical orbital parameters. The

chosen satellites cover a wide range of orbital conditions that can be cataloged in five main families:
1) Low Earth Orbit (LEO), mainly influenced by the atmospheric drag throughout their lifetime.
2) High Elliptical Orbit (HEO), perturbed principally by the Moon - not considered in this paper and considered as a future

development - and secondly by the gravity potential perturbation close to the perigee.
3) Geosynchronous Transfer Orbit (GTO), altered by the drag force close to the perigee and by gravity potential because of

their high eccentricity.

5 of 11
American Institute of Aeronautics and Astronautics



4) Medium Earth Orbit (MEO) and Geostationary Earth Orbit (GEO), weakly affected by gravity potential perturbations
and solar radiation pressure - not considered in this work.

Satellite a [km] e [−] i [◦] Ω [◦] ω [◦] M [◦] Orbit Class
E-Grasp 10495.1363 0.319671884 63.4 0.0 180.0 0.0 LEO
Proba 3 36943.0 0.8111 59.0 84.0 188.0 0.0 LEO
Molniya 26554.0 0.72 63.4 0.1 280.0 0.0 HEO
Tundra 42164.0 0.825 63.4 0.0 270.0 0.0 HEO

XMM-Newton 65648.3 0.816585 67.1338 0.0 270.0 0.0 HEO
Integral 87941.0 0.856052 54.0 0.0 0.0 0.0 HEO
SimbolX 106247.136454 0.75173 5.2789 89.341 -179.992 0.0 HEO

Standard GTO 24688.1363 0.716538 5.0 0.0 0.0 0.0 GTO
Super GTO 51528.1363 0.870398 30.0 0.0 0.0 0.0 GTO

SSTO 56640.6363 0.878124 45.3 0.0 0.0 0.0 GTO
ATV 6586.1775 0.00328 51.6 153.48 -21.395 215.24 LEO

CryoSat 7100.4651 0.00252 92.029 -37.185 107.492 51.202 LEO
EyeSat 7078.0 0.0 98.18 0.0 0.0 0.0 LEO
Jason 1 7254.0729 0.06216 66.974 -74.818 -241,05 179.7259 LEO
LEO 6831.5723 0.001357 51.6 224.8 280.1 66.5 LEO

Prisma FFIORD 13479.858 0.002 98.0 290.0 0.0 0.0 LEO
Proba 2 7106.137 0.000039 98.3 91.364 -1.423 180.0 LEO

SPOT-Like 7081.139 0.0158 98.0 164.02 0.0 0.0 LEO
Galileo 29995.22529 0.001040 56.0009 0.0 0.0 0.0 MEO
T2C 42830.90787 0.001956 5.6622 160.7292 249.2383 199.3432 GEO

Standard GEO 42170.0 0.001 0.00001 0.0 0.0 0.0 GEO
Table 2 Orbital parameters and orbit type of the considered test cases.

The initial conditions are propagated for a time span ∆t whose expression is given by:

∆t = (γ + R) Torb (16)
where Torb is the orbital period, γ = {0.9, 0.98} is the orbit sweeping percentage and R = {0, 2, 10} - considered as an input
data of the algorithm - is the number of orbit revolutions. It is remarkable that in operational problems the value of R is not
known and the algorithm must be run several times in order to compute the most reasonable value of R. On the one hand, the
values of R have been chosen to study the optimization algorithm in case of short, medium and long propagation and, on the
other hand, the selected values of γ have been designated to consider a well-conditioned and an ill-conditioned problem. The
case γ = 0.98 is ill-conditioned as the initial and the final position are close to each other.
In the following subsection the results are presented where the PLP solver’s constants have been chosen as follows: nmax has
been chosen in order to achieve convergence, η = 0.5, dt = 30 s and ε = 1 m where ε is the stopping absolute tolerance, η is the
step-size contraction factor, dt is the integration step and nmax is the maximal iterations number. The chosen absolute tolerance
ε is extremely low if compared with operational problems but it has been chosen to test the algorithm robustness.

B. Numerical results
In the present section the batch of simulations is presented. All the simulations have been performed on an Intel® Core™

i3-2120 @3.30 GHz with 2 physical cores and 4 logic ones running on Microsoft Windows 7 Enterprise.
Firstly, a preference Taylor expansion order is deduced by looking at computational times. In Figures 5a - 5d the normalized
time with respect to order 1 elapsed time is shown and it is clear that order 2 is the more convenient to be exploited.
As a consequence, the reported simulations consider polynomials of order 1 and 2. Therefore, the performance parameter τPLP
is defined as the rapport between the order 2 computational time tel, 2 and the order 1 one tel, 1:
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∆t = 0.9Torb tel, 1 = 31.517 s
∆t = 0.98Torb tel, 1 = 432.773 s
∆t = 2.9Torb tel, 1 = 388.249 s
∆t = 2.98Torb tel, 1 = 5193.266 s
∆t = 10.9Torb tel, 1 = 15779.442 s
∆t = 10.98Torb tel, 1 = 5853.179 s

(a) Molniya case (HEO Family).

Order
1 2 3

T
im

e
[−

]

0

0.5

1

1.5

2

2.5

3

∆t = 0.9Torb tel, 1 = 1.891 s
∆t = 0.98Torb tel, 1 = 8.636 s
∆t = 2.9Torb tel, 1 = 14.084 s
∆t = 2.98Torb tel, 1 = 61.469 s
∆t = 10.9Torb tel, 1 = 229.919 s
∆t = 10.98Torb tel, 1 = 379.658 s

(b) Jason 1 case (LEO family).

Order
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∆t = 0.9Torb tel, 1 = 3.521 s
∆t = 0.98Torb tel, 1 = 3.278 s
∆t = 2.9Torb tel, 1 = 12.687 s
∆t = 2.98Torb tel, 1 = 16.249 s
∆t = 10.9Torb tel, 1 = 100.552 s
∆t = 10.98Torb tel, 1 = 122.52 s

(c) Standard GEO case (GEO family).
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∆t = 0.98Torb tel, 1 = 3589.085 s
∆t = 2.9Torb tel, 1 = 15132.704 s
∆t = 2.98Torb tel, 1 = 4701.846 s
∆t = 10.9Torb tel, 1 = 9923.916 s
∆t = 10.98Torb tel, 1 = 27214.716 s

(d) Super GTO case (GTO family).

Figure 5 Comparison of elapsed time with respect to polynomial order for different orders for an archetype of the
four main orbit families. Computing time is normalized with respect to the order 1 value (reported in the legend).

τPLP =
tel, 2

tel, 1
(17)

The complete batch of results is presented in Tables 4 and 5 where elapsed time and number of performed iterations are shown.
By looking at the results, it is deducible that in the well-conditioned case convergence is achieved both with order 1 and 2 even
if the order 2 has an non-negligible improvement as far as the performance index is concerned.
Furthermore it is remarkable that the initial condition v0

in plays a central role as, in most ill-conditioned cases, the convergence
is achieved just with a first Keplerian initial condition vink . In some cases - like SSTO with ∆t = 0.98 Torb - the problem is
given by the fact that the second Keplerian initial condition v′ink is not close to the true solution. In other cases - such as Super
GTO with ∆t = 0.98 Torb - both initials conditions do not lead to convergence as the problem has multiple solutions and the vnin
jumps in the optimized state space until divergence is obtained. Finally, the non-uniqueness of the solution is clear in some
cases as the optimization converges to a different velocity from the one used to generate the final position r f in. In these cases -
like EyeSat with ∆t = 10.98 Torb - the use of a order 2 polynomial allows the convergence to the targeted solutions because more
information about dynamical model derivatives is available.
In Table 3 the numerical values of parameter τPLP are listed. It can be seen that the higher the number of revolutions is the more
convenient it is to add information with a second-order polynomial. An exception to this scenario is the GEO family where the
order 1 is always convenient. This is due to the low non-linearity of the perturbation affecting the orbital motion.
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0.9 Torb 0.98 Torb 2.9 Torb 2.98 Torb 10.9 Torb 10.98 Torb

E-Grasp 0,374 0,149 0,215 0,062 0,065 – 1,2

Proba 3 0,081 0,094 0,053 0,075 0,040 0,047
Molniya 0,260 0,064 0,154 – 2,3 0,022 0,105
Tundra 0,972 0,026 0,275 – 1 – 1,2 0,315

XMM-Newton 1,836 0,189 1,029 0,039 0,115 – 2

Integral 2,188 0,204 1,192 0,601 0,115 – 2

SimbolX 2,357 0,511 1,548 0,277 2,075 0,227
Standard GTO 0,846 0,112 0,311 – 1,2 0,040 0,361
Super GTO 0,894 – 1 0,019 0,177 0,283 0,075

SSTO 0,932 0,024 0,007 – 4 – 2 0,113
ATV 0,350 0,119 0,232 0,052 0,131 – 4

CryoSat 1,052 0,645 0,473 0,296 0,201 0,552
EyeSat 0,603 0,627 0,357 0,589 0,208 – 3

Jason 1 0,452 0,129 0,196 0,096 0,099 0,123
LEO 1,120 0,198 0,559 0,140 0,223 0,161

Prisma FFiord 1,245 0,458 0,469 0,339 0,205 0,364
Proba 2 0,238 0,272 0,135 0,198 0,187 0,148

SPOT Like 0,587 0,344 0,294 0,373 0,123 0,898
Galileo 2,286 1,674 1,889 1,124 1,168 0,728
T2C 2,271 1,550 1,787 1,097 1,372 0,585

Standard GEO 2,240 2,385 1,789 1,917 1,299 1,586
1 Order 1 not converging
2 Order 2 not converging

3 Order 1 converging to a different solution
4 Order 2 converging to a different solution

Order 2 is more convenient Order 1 is more convenient τPLP cannot be computed

Table 3 Time gain τPLP between order 2 and order 1.

VII. Conclusions and Future Perspectives
In this paper a shooting method based on DA thrust-region optimization has been developed, implemented and tested.

Results are promising even though further studies are necessary.
Several remarks must be made:

• The first point to remark upon is the importance of the initial condition for obtaining convergence. Two types of
optimization initial condition v0

in have been proposed. From a convergence point of view, the first Keplerian solution vink
ensures convergence in most of the cases as the step-size is smaller at the beginning of the optimization and the algorithm
does not diverge. Nevertheless, the second Keplerian solution v′ink assures a faster convergence. Therefore, an accurate
choice of the optimization initial condition is advised for highly non-linear orbit families, such as HEO and GTO.

• The preferred polynomial order is the order 2 as it is a satisfying compromise between accuracy of the polynomial
expansion and the optimization time. A more detailed study can be performed by looking at each orbit family. On the one
hand, an order 1 is generally faster for MEO and GEO orbits as the non-linearity is weakly affecting the orbit motion. On
the other hand, an order 2 assures a concrete and non-negligible decrease of computing time in all the other cases.

• By looking at previously-expounded results, it seems clear that the present method is useful for solving the PLP for the
LEO family as the computational time is lower than 10 minutes with all propagation time ∆t. HEO orbits require more
time as, when R and γ increase, each iteration needs a considerable time to compute the final position by performing
the complete propagation. Moreover, as the absolute tolerance is low, convergence is slower than the one expected in
operational cases.

Future studies are needed to improve the PLP solver performances. In order to enlarge the radius of convergence of the Taylor
polynomial expansion automatic domain splitting [17] could be used even though the error thresholds and the number of
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splitting would be user-fixed. Moreover, in order to avoid long term propagation, a DA evaluation map could be performed
as in Reference 18. With this approach, long propagation can be reported to a single revolution problem even if it must be
understood when the validity of the Taylor approximation ends. Furthermore, a regularization parameter λ should be added to
ensure convergence to an initial velocity closer to the solver initial condition. An example could be:

J =
���∆r̃nf in��� + λ ��ṽnin − ṽ0

in

�� (18)

where J is the criteria to be optimized. Finally, the third body perturbation should be implemented in order to have a complete
overview of the possible perturbing forces.
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0.9 Torb 0.98 Torb 2.9 Torb 2.98 Torb 10.9 Torb 10.98 Torb
Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−]

E-Grasp 9,837 42 46,481 197 97,192 138 742,558 1151 1999,776 749 – 3 – 3

Proba 3 303,381 216 741,5 489 2553,436 566 3882,731 938 26880,885 1712 31053,409 1957
Molniya 52,044 59 743,785 792 666,878 242 33551,874 2 12429 2 20449,479 1 2047 1 10352,277 1 1074 1

Tundra 56,458 33 5493,018 3063 1694,393 315 – 3 – 3 – 3 – 3 4238,418 222
XMM-Newton 30,819 9 968,207 291 303,421 30 15979,405 1580 27379,839 756 62526,606 1723

Integral 46,934 9 1641,489 311 459,499 30 21784,91 1424 55789,639 1020 58101,108 1047
SimbolX 29,411 4 179,635 26 129,144 6 1625,049 80 1240,723 18 29384,94 399
STD GTO 31,736 42 663,425 855 590,342 252 – 3 – 3 29749,384 1 3330 1 7593,837 883
Super GTO 126,51 56 – 3 – 3 2108,548 1 286 1 8264,914 1123 16629,764 663 46826,47 1853

SSTO 131,825 51 7231,724 1 2519 1 39706,251 5212 8950,043 1064 15958,925 553 33131,218 1144
ATV 4,355 39 25,859 221 38,437 121 1509,539 4384 1289,493 984 5452,162 4544

CryoSat 0,999 8 2,167 16 7,791 22 20,675 55 110,021 76 445,539 1 334 1

EyeSat 2,124 17 3,275 25 17,488 50 33,207 89 298,709 207 417,074 2 313 2

Jason 1 3,076 24 16,393 123 24,038 66 107,935 279 423,2 282 672,303 489
LEO 1,093 9 8,405 68 7,791 23 61,646 171 141,735 102 458,969 363

Prisma FFiord 2,654 8 7,741 23 20,275 22 53,721 55 316,844 84 326,908 95
Proba 2 7,948 66 9,931 77 67,16 192 94,9 254 794,941 542 1282,097 971

SPOT Like 1,609 13 5,063 39 12,413 35 51,301 138 200,782 140 997,72 1 749 1

Galileo 3,527 3 7,055 6 16,62 5 43,255 13 126,65 10 444,15 39
T2C 5,994 3 10,091 5 22,78 4 51,073 9 146,01 7 429,686 22

STD GEO 5,604 3 6,024 3 21,361 4 27,465 5 174,122 9 205,233 11

1 Converging only with the first optimization initial condition vink
2 Converging to a different solution to the one it is expected
3 Not converging with both optimization initial conditions

Table 4 Computation times and iterations in a order 1 case for the previously-exposed test cases.
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0.9 Torb 0.98 Torb 2.9 Torb 2.98 Torb 10.9 Torb 10.98 Torb
Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−] Time [s] Iterations [−]

E-Grasp 3,683 6 6,911 10 20,893 12 46,242 25 130,092 21 – 3 – 3

Proba 3 24,534 7 69,86 18 134,955 12 290,7 26 1086,997 29 1446,577 38
Molniya 13,52 6 47,529 19 102,947 15 – 3 – 3 444,716 19 1086,037 46
Tundra 54,861 13 140,546 27 466,746 36 – 3 – 3 15375,942 337 1336,033 29

XMM-Newton 56,597 7 183,359 21 312,155 13 620,297 24 3138,816 36 – 3 – 3

Integral 102,68 8 334,825 26 547,547 15 13086,253 346 6427,815 48 – 3 – 3

SimbolX 69,331 4 91,872 5 199,89 4 449,973 9 2574,034 7 6660,268 19
Standard GTO 26,846 15 74,421 36 183,885 33 – 3 – 3 1179,132 57 2743,875 130
Super GTO 113,154 20 72,358 12 322,312 19 1459,454 83 4703,298 1 75 1 3502,926 57

SSTO 122,919 19 175,263 25 271,758 14 59964,938 2 2960 2 – 3 – 3 3735,476 52
ATV 1,523 5 3,075 10 8,928 11 78,859 88 168,288 51 1108,452 2 330 2

CryoSat 1,051 3 1,397 4 3,684 4 6,118 6 22,127 6 246,148 67
EyeSat 1,281 4 2,053 6 6,243 7 19,56 19 62,028 17 356,149 1 72 1

Jason 1 1,39 4 2,113 6 4,713 5 10,383 10 42,038 11 82,983 21
LEO 1,224 4 1,663 5 4,355 5 8,631 9 31,614 9 73,944 21

Prisma FFiord 3,303 4 3,549 4 9,519 4 18,211 7 64,828 7 119,013 13
Proba 2 1,889 6 2,701 8 9,068 10 18,824 19 148,982 43 190,015 53

SPOT Like 0,944 3 1,744 5 3,653 4 19,151 20 24,765 7 896,321 248
Galileo 8,062 3 11,808 4 31,389 4 48,601 6 147,911 5 323,313 11
T2C 13,613 3 15,646 3 40,718 3 56,025 4 200,345 4 251,281 5

Standard GEO 12,552 3 14,365 3 38,222 3 52,655 4 226,194 5 325,556 7

1 Converging only with the first optimization initial condition vink
2 Converging to a different solution to the one it is expected
3 Not converging with both optimization initial conditions

Table 5 Computation times and iterations in a order 2 case for the previously-exposed test cases.
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