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A semi-analytical Monte Carlo fibre bundle model was developed to investigate the role of
dynamic effects and fracture mechanics in the longitudinal tensile failure of fibre-reinforced
composites. To the knowledge of the authors, it is the first time that both effects are imple-
mented in a fibre bundle model through direct simulation. The formulation includes a field
superposition method to calculate the stress concentration around broken fibres which cap-
tures the effect of clusters of broken fibres. The Monte Carlo process was optimized to allow
the simulation of bundles with thousands of fibres. The comparison between the predicted
bundle strengths and experimental data suggests that, although the dynamic stress concentra-
tion significantly decreases the bundle strength, the trend and magnitude of the size effects in
large composite bundles can only be explained considering fracture mechanics as the failure
mechanism.

I. Introduction
Composite materials, especially Fibre Reinforced Plastics (FRPs), have changed the aeronautical industry since their

relatively recent introduction in aircraft structures. Future investigation in this field, with the development of reliable
mechanical models, seem key for an industry where both mechanical performance and weight are critical factors.

The strength and stiffness of FRP laminates is controlled, to a great extent, by the fibres in the load-aligned plies,
thus fibre-dominated tensile failures can lead to a significant drop in local stiffness, and can trigger catastrophic failure
of an entire composite structure. The longitudinal tensile strength of unidirectional (UD) FRPs is characterized by
strong size effects connected to both the length of the specimens and the total number of fibres.1–4 Since the formation
of clusters of broken fibres and their catastrophically propagation once reached a critical size govern the longitudinal
tensile failure, larger structures (with more and/or longer fibres than a smaller one) will be more likely to have more
defects, making easier the formation of a critical cluster of broken fibres and lowering the final strength.

The stochastic variability of the single fibre strength and the stress redistribution that occurs around broken fibres
have been identified as important factors to predict size effects.5–8 Several Fibre Bundle Models (FBMs) created in the
literature aim to predict the stress concentrations generated in the intact fibres after fibre failures in a bundle remotely
loaded under tension.6 In these FMBs, this load is progressively increased until all fibres are broken, or until the
composite cannot withstand further load increments, in order to predict the strength of the bundle.

Some analytical FBMs were developed,9,10 and Pimenta and Pinho recently proposed an analytical hierarchical
scaling law for the strength of composite bundles which has been validated against experimental results.6,11 Nevertheless,
in most models in the literature the ultimate strength of the bundle is a stochastic variable which has to be characterized
statistically through Monte Carlo simulations.5 These Monte Carlo FBMs calculate stress fields around broken fibres
through Finite Elements (FE)12–15 or combined field-superposition methods,7,8,16 which calculate deterministic stress
fields near single-fibre breaks and then use a superposition method to include those fields in the failure simulation of
fibre bundles with multiple breaks.

However, most FBMs only consider fibre stress overload (i.e. strength of materials approach) as the bundle failure
criterion, thus failing to predict size effects accurately.12,14 Bazant has shown that final failure of a composite structure
is governed by the composite fracture toughness for large-scale components,17 and there is growing experimental
evidence that unstable failure of carbon fibre/polymer matrix bundles occurs when a cluster of approximately 14 or
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more broken fibres is formed.18,19 Furthermore, fibre failure is a dynamic process, resulting in a change of stress field
over time, before it finally dampens to the static level. Dynamic stress concentrations can be significantly higher than
static ones,9 but all state-of-art FMBs ignore this effect and only consider static equilibrium stress states.20

This paper presents the development of a Monte Carlo FBM with a semi-analytical field superposition method that
implements both the effects of dynamic stress concentrations and fracture mechanics driven growth of clusters in the
failure process. In order to allow the direct simulation of large bundle sizes, the Monte Carlo simulation process was
optimised using statistical analysis. The work was part of a wider research effort into the statistical characterization of
the strength of composite structures. A full description of the model development can be found in Bullegas, Lamela et
al.21

The paper is organised as follows: Section II presents the theoretical basis of the model, including the formulation
of the dynamic effects and fracture mechanics features. Section III contains an overview of the numerical results and a
comparison between experimental and predicted strength distributions both in micro and macro-bundles, followed by
the discussion in Section IV. Finally, Section V draws the main conclusions.

II. Model development
The geometry considered in the model is a bundle of nf fibres of length ls, diameter φf and cross section Af with

fibre volume fraction Vf (Figure 1). Each fibre in the bundle is subdivided into nel fibre elements of size lel. The fibres
are packed in a square arrangement with inter-fibre spacing s, although it has been established that the differences due to
fibre arrangement are remarkably small.8,22 The bundle is loaded in tension by a remote, asymptotic stress σ∞ applied
to the fibre extremities.

Each fibre element i j belonging to a fibre i (i = 1, ..., nf) and a cross section j ( j = 1, ..., nel) is assigned a stochastic
strength X i j following a Weibull distribution (see Appendix A), and stands a stress σi j . If none of the fibres in the bundle
are broken, then σi j = σ∞ ∀ i j. A fibre breaks if σi j ≥ X i j for any of its elements; in this case, for the broken/failed
element σ(i j)fa = 0, whereas the rest of the field σi j needs to be calculated.

Figure 1 Geometry of the model

A. Shear-lag mechanism and shear-lag stress limit
Once a fibre element fails, the longitudinal stress in that element goes to zero (σ(i j)fa = 0), but it is recovered in the

rest of the fibre due to the shear stress transmitted by the matrix via a shear-lag mechanism10,11,23,24 (Figure 2a). This
mechanism defines a shear-lag stress limit σi j

sl for each element in the broken fibre, which is the maximum stress level
that the element is able to stand.

The portion of the fibre where σi j
sl ≤ σ∞ is the recovery length associated with the failed element (i j)fa, and the

elements within it are called saturated elements. The non-saturated elements are called intact elements. The loss of
stress in the saturated elements is redistributed on the rest of the fibres of the bundle, which experience a higher stress
concentration in the region of the break (Figure 2b).

Assuming that the axial load is only carried by the fibres, and the matrix is loaded in shear to the yield stress τsl
(perfectly plastic behaviour), the shear-lag stress limit σ(i j)(i j)fasl for each element i j in fibre i due to the failed element
(i j)fa can be calculated applying force equilibrium:

σ
(i j)(i j)fa
sl =

∑
i[j−(j)fa]

Ci j
sl ·

τsl
Af
· lel , (1)
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where Ci j
sl is the shear-lag boundary, which is the contour, measured at each cross section j, over which the shear

stress is transmitted for each fibre element. Of course, for the broken element σ(i j)fa(i j)fasl = 0.
For intact elements, Ci j

sl is calculated computing the number of interfaces between i j and other intact elements
in the cross section j, with a maximum of 4 (see Figure 2c). Note that if a surrouding element is saturated the load
transference through this interface is blocked. If there are consecutive saturated elements in the cross section j, they are
considered to form a cluster, because the load transmission among them is impeded. If a saturated element i j belongs to
a cluster, Ni j

cl is the set of elements of the cluster and ni jcl the cluster size. The clusters act as stress lacking-regions, thus
Ci j

sl is the total shear-lag boundary of the cluster divided by the number of elements that contains. Assuming that a
single saturated element is a cluster of size 1, a general expression for the shear-lag boundary can be formulated:

Ci j
sl =

Cf
4
· ni jel,in if σi j

sl > σ∞ (intact); Ci j
sl =

Cf

4 · ni jcl

·
∑
N
i j
cl

ni jel,in if σi j
sl ≤ σ∞ (saturated) (2)

where Cf is the fibre circumference and ni jel,in is the number of intact elements surrounding element i j. This
formulation allows to capture the effect of clusters in the recovery mechanism: attending to Eq.(1), if Ci j

sl becomes
smaller due to the presence of a cluster, then the recovery mechanism is more limited.

Eqs.(1)-(2) are computed twice: first, they are computed without considering the existence of clusters in order to
detect the saturated elements, and then applying the correct Ci j

sl . Extending the formulation to the non-broken fibres
and considering the possibility of multiple breaks in the same fibre, the shear-lag stress limit is calculated for all the
elements in the bundle:

σ
i j
sl =


∞ if � (i j)fa ∈ fibre i;
min
[(i j)fa]

(
σ
(i j)(i j)fa
sl

)
if ∃ (i j)fa ∈ fibre i. (3)

(a) (b) (c)

Figure 2 Shear-lag mechanism. (a) Shear-lag mechanism and recovery length definition. (b) Shear-lag stress
limit and stress redistribution. (c) Definition of the shear-lag boundary (for two different intact elements and a
cluster with two saturated elements; the red arrows indicate the available interfaces for the load transmission).

B. Cluster criticality index
The clusters of broken fibres formed during the damage process may start acting as cracks in the material (Figure 3).

If the energy release rate associated with these clusters/cracks is higher than the corresponding fracture toughness of the
material, they can trigger catastrophic failure.

Each of the s clusters in each cross section j contains a set Ns j
cl of ns jcl saturated elements and can be idealised as an

equivalent circular translaminar crack defined by the equivalent diameter as j
eq (see Figure 3b):
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as j
eq =

√
4 · ns jcl · Af

π · Vf
. (4)

In order to determine the conditions for the critical propagation of the equivalent crack, an analogy with the problem
of a flat penny-shaped crack in an isotropic cylinder is used. In this case, the critical crack size for a given applied stress
σeq depends on the geometry (through a geometrical factor Kg), the material properties (through the Young modulus E
and the Poisson ratio ν), the mode I fracture toughness GIc of the material and the inverse of the square of the stress σeq.

In the cylinder case, Kg = π/4 and GIc is measured for an isotropic material. Nairn25,26 developed a shear-lag model
that gives estimations for the energy release rate due to crack propagation in unidirectional composites, but it does not
apply for clusters of broken fibres. In order to deal with the lack of accurate estimations for GIc and Kg in composites, a
fracture mechanics factor λfm [J ·m−2] is introduced. Hence, the critical cluster size as j

cr is

as j
cr =

λfm

σ2
eq
· E
(1 − ν2)

, where λfm = Kg · GIc. (5)

Additionally, it is necessary to consider that (i) the axial load is not carried by the entire cross section but only by the
fibres, and (ii) the actual locations of the fibres are not in the same plane, thus stress can still be transferred between the
two faces of the equivalent crack due to the friction between the fibres. Hence,

σ
s j
eq = Vf · (σ∞ − σs j

po ) (6)

where σs j
po is the average pull-out stress due to the friction between the fibre pull-outs and can be calculated as

σ
s j
po =

τfr · Cf

ns jel · Af
·
∑
N

s j
cl

min | j − jfa | · lel (7)

where τfr is the frictional stress acting on the lateral surface of each fibre pull-out and min | j − jfa | · lel is the pull-out
length `i jpo, which is the distance between the cross section j and the cross-section of the closest failed element jfa in the
same fibre i (see Figure 3c). The pull-out stress decreases the energy available for crack propagation, and reflects the
fact that clusters of broken fibres which are almost coplanar are more likely to become critical than clusters which are
more dispersed.

Hence, at each cross section j, Eqs.(5-7) are computed for each cluster of broken fibres, and a cluster criticality
index Is jcl is defined:

Is jcl =
as j

eq

as j
cr

(8)

If Is jcl ≥ 1 for any cluster, it is assumed to propagate catastrophically and in consequence the bundle is considered
failed.

(a) (b) (c)

Figure 3 Fracture mechanics modeling. (a) Cluster of broken fibres. (b) Equivalent crack size. (c) Pull-out
phenomenon (different colours were used for each fibre of the cluster).
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C. Stress redistribution
Once the shear-lag stress limit is defined for each fibre, the final stress state in the bundle is computed by redistributing

at each cross section the loss of stress from the saturated elements to the intact elements. Assuming that each cross
section j contains Nj

st saturated elements (i j)st and Nj
in intact elements (i j)st, the static equilibrium stress field σi j is

computed applying the principle of superposition to each intact element:

σi j =


σ
i j
sl if i j ∈ Nj

st
σ∞ +

∑
N

j
st

∆σ(i j)in(i j)st if i j ∈ Nj
in

(9)

where ∆σ(i j)in(i j)st is the additional stress redistributed on (i j)in as a result of the stress loss on (i j)st.
Almost the totality of the FBMs in the literature only consider static equilibrium stress fields but, in reality, when a

fibre fails, the stored elastic energy is released in form of a dynamic stress wave. This wave propagates throughout the
intact fibres during a short time interval (hereafter transient interval), causing a dynamic stress redistribution σi j

dyn, and
then is dampened by the material and the field reverts to equilibrium (σi j).

Considering that dynamic effects act by increasing the stress concentration on the intact fibres during the transient
interval, the dynamic stresses can be computed from the static one with a dynamic magnification factor λdyn:

σ
i j
dyn =


σ
i j
sl if i j ∈ Nj

st;
σ∞ + λdyn ·

∑
N

j
st

∆σ(i j)in(i j)st if i j ∈ Nj
in.

(10)

The static equilibrium solution is given when λdyn = 1, but the fibres experience higher stress levels during the
dynamic transient. Dynamic stress concentrations have been reported to range between 160% and 200% of the
corresponding static ones depending on the material properties and fibre packing.9,20,27–30 However, in this model we
do not seek to simulate the stress evolution during the entire transient, but we estimate an upper-bound of the dynamic
effects. Hence, we assume a maximum dynamic magnification factor of λdyn = 2, since this is the theoretical maximum
magnification for a spring-mass system without damping subject to a step load. Comparing Eq.(10) with λdyn = 2 with
Eq.(9) will reveal an upper-bound for the role of dynamic stresses in comparison with static levels.

To calculate each ∆σ(i j)in(i j)st , we propose an analytical power law to reproduce the fact that the closer regions to
broken fibres undergo higher stresses than more distant ones:

∆σ(i j)in(i j)st = Φ(i j)st ·
(
r (i j)in(i j)st

s

)−γ
, (11)

where r (i j)in(i j)st is the distance between fibre elements in the cross section j and is normalized by fibre spacing s
(hereafter indicated as r̄ in,st), and γ is the parameter which controls the shape of the stress redistribution function. The
variable Φ(i j)st is calculated by imposing force equilibrium to the entire bundle cross section:

σ∞ − σ(i j)stsl =
∑
N

j
in

Φ
(i j)st ·

(
r̄ in,st

)−γ
⇒ Φ(i j)st =

σ∞ − σ(i j)stsl∑
N

j
in

(r̄ in,st)−γ
. (12)

St-Pierre et al. developed a similar formulation for the stress redistribution around clusters of broken fibres13 and
validated a value of γ = 2 for the redistribution function, which we will use for all the simulations throughout this
document.

The additional stresses may cause new elements in the cross section j to reach their shear-lag limit (incrementing the
set of saturated elements Nj

st); in consequence, the calculation of the stress state in the bundle is performed iteratively.
After the first step, Eqs.(9)-(12) are used but starting each iteration with the previous field σi j instead of σ∞.

D. Failure process simulation
Under a certain remote stress σ∞, the bundle status is defined by the cluster criticality indexes Is jcl , given by Eq.(8),

and both the static and dynamic stress fields σi j and σi j
dyn, given by Eqs.(9) and (10). To simulate the entire failure
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process and obtain the ultimate strength of the bundle Xb, we set an iterative process by varying σ∞(tk) (tk=0,1,2,...)
until final failure.

At each step tk , only one new fibre element fails, which will be identified as (i j)fa(tk), and the bundle status is
recalculated for the damage status defined by all the fibre elements broken up to that point, under the asymptotic stress
σ∞(tk). As initial condition to start the simulation (tk = 0), the bundle is loaded to σ∞(0) = min(X i j) to break the
weakest fibre element (i j)fa(0).

To select which element breaks at each step and how to update the remote stress, we consider that damage in the
bundle can progress either through (i) fibre failure due to the dynamic stress concentrations during the transient interval,
or (ii) fibre failure due to the rise of the assymptotic stress σ∞(tk).

Scenario (i) occurs if σi j
dyn(t

k) ≥ X i j for at least one non-broken fibre element in the bundle. For all the elements
that meet this condition, the new failed element (i j)fa(tk+1) is the closest to the last broken one. The asymptotic stress is
updated as follows:

σ∞(tk+1) = σ∞(tk) (13)
Scenario (ii) occurs if dynamic stress concentrations already dampened to the static levels without causing any new

failure in the bundle. In this case, the asymptotic stress is raised to provoke the failure of the weakest non-broken
element:

σ∞(tk+1) = min
(

X i j

σi j(tk)

)
· σ∞(tk) (14)

The simulation is stopped if Is jcl (t
k) ≥ 1 for any cluster and then Xb = σ∞(tk) (fracture mechanics driven failure);

or if σi j(tk) ≥ σi j
sl (t

k) for all the elements in the same cross section j, and then Xb = max(σ∞(tk)) (saturation of the
shear-lag mechanism or strength of materials driven failure). The whole iterative procedure is summarized in Figure 4.

Figure 4 Flowchart of the damage simulation process.

E. Monte Carlo stopping criterion
To accurately calculate the statistical strength parameters (bundle mean strength X̄b and standard deviation SDb),

the selection of an appropriate number of Monte Carlo simulations is critical. Although most models in the literature
use a fixed number of simulations for all bundle sizes, both experiments and models shows a decrease in the bundle
strength variability when increasing the number of fibres in the bundle.11,31 In this work, a bundle-size variable number
of Monte Carlo simulations was implemented as a way to increase computational efficiency, while keeping the accuracy
of the results constant.

Given a sample with N simulations, and following the Central Value Theorem, it is possible to calculate the
confidence interval at 95% as

w95%
IC =

[
X̄N

b − t(N − 1, 0.025) ·
SDN

b√
N

, X̄N
b + t(N − 1, 0.025) ·

SDN
b√

N

]
(15)
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where t(N − 1, 0.025) is the value of the Student's-t distribution with N − 1 degrees of freedom for a cumulative
probability of 97.5%. The mean X̄N

b and standard deviation SDN
b of the sample are used as estimators of the equivalent

normal distribution parameters.
After each Monte Carlo simulation, Eq.(15) is computed until the width of the interval predicts the mean strength

with a maximum accepted error EX̄ = ±1%. A minimum number of Nmin = 12 is used to assure that the initial estimation
of the mean and standard deviation are statistically meaningful.

III. Results
Three different versions of the model are compared to analyse the features described above and capture the effects of

each failure mechanism separately (Table 1). Model A correspond to a baseline version, which do not include dynamic
effects (no dynamic stresses or λdyn = 1) nor fracture mechanics (infinite fracture toughness or λfm = ∞). Model B
includes the effect of dynamic stress concentration factors in the predicted strength. Model C performs a parametric
study with different values of λfm to study the scope of the fracture mechanics driven failure.

Unless otherwise stated, all the simulations were carried out with lel = 0.005 mm and ls = 1 mm (200 elements per
fibre). Scaling from ls to a different bundle length lb is performed using the Weakest Link Theory (see Appendix A). No
scaling is applied to the number of fibres, which means that the actually desired number of fibres is simulated directly.

Figure 5a shows the comparison between the predicted mean strength and coefficient of variation between models A
and B, for length lb = 10 mm. The nominal input properties for the fibres and resin were obtained from Okabe and
Takeda12 and listed in Table 2. Figure 5b shows how damage in the bundle varies when considering dynamic effects.

Figure 6a compares the mean strength and coefficient of variation between models A and C, for a bundle length
lb = 10 mm and the same input properties. To apply Eqs.(5)-(7) the composite mechanical properties are E = 120 GPa,
ν = 0.28 and τfr = 10 MPa, while λfm is treated as a free parameter in the model and results for different values are
presented. Figure 6b presents the impact of fracture mechanics in the maximum cluster size in the bundle.

Figures 7a-c validates the models against experimental strength data. Figures 7a-b shows predictions of Models A
and B for micro-composites (four square-packed fibres). Fibre properties were taken from the experiments of Beyerlein
and Phoenix,31 and two different matrices were compared: matrix (I) is a low modulus, flexible epoxy, with τsl = 3.96
MPa and matrix (II) is a high modulus, stiff epoxy, with τsl = 41.67 MPa. Both yield stresses were obtained from
Netravali et al.32 In this case, no scaling technique is applied, so ls = lb = 10 mm. The strength predictions for the
same material system obtained via Monte Carlo simulation of a full-field FE bundle model from St-Pierre et al.13 were
included for comparison.

Figures 7c compares results from models A, B and C with experimental data for the average strength of composite
bundles ranging from one thousand up to one million fibres obtained from Okabe and Takeda (input properties in Table
2). The results were scaled to lb = 10 mm from the simulated bundle length ls = 1 mm. For model C, results for
different values of λfm are presented.

Table 1 Summary of the three models developed for comparison

Ref. Model family Dynamic stresses Fracture mechanics

Model A Baseline λdyn = 1 λfm = ∞
Model B Dynamic effects λdyn = 2 λfm = ∞
Model C Fracture mechanics λdyn = 1 Parametric study

Table 2 Fibre and bundle input properties for the study

Fibre properties and Weibull parameters Bundle inputs

Reference Type φf [µm] X lr
0 [MPa] m [−] lr [mm] τsl [MPa] Packing Vf [-]

Okabe and Takeda12 T800H 5.0 3570 3.8 50 52.4 Square 0.60
Bayerlein and Phoenix31 AS4 6.85 4493 4.8 10 3.96 / 41.67 Square 0.70
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(a) (b)

Figure 5 Role of dynamic effects. (a) Predicted strength and coefficient of variation for models A and B (Results
presented for lb = 10mm). (b) Effect of dynamic stress concentration in the formation of clusters.

(a) (b)

Figure 6 Role of fracture mechanics. (a) Predicted strength and coefficient of variation for models A and C
(Results presented for lb = 10mm and for different values of λfm). (b) Critical cluster size as a function of the bundle
size (for different values of λfm).

(a) (b) (c)

Figure 7 Validation against experimental data (all results presented for lb = 10 mm). (a)-(b) Predicted bundle
strength distributions for micro-composites for matrices (I) and (II) (results presented on a Weibull plot; the
geometry of the packing is depicted). (c) Predicted strength for macro-composites.
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IV. Discussion
A. Dynamic effects

Figure 5a shows that both models A and B predict a constantly increasing bundle strength and a coefficient of
variation that decreases substantially with bundle size, thus the selection of a bundle-size variable number of Monte
Carlo simulations is proven to be a very effective approach. Dynamic effects act lowering the predicted bundle strength
by around 10%, but the true effect is expected to be lower, since model B represent an upper-bound for the maximum
intensity of these effects.

Dynamic stress concentrations do not change the maximum size of the clusters formed, but the average distance
between consecutive failure points becomes smaller (Figure 5b), suggesting that dynamic effects lead to clusters that are
more coplanar. The formation of coplanar clusters during tensile tests have been confirmed by computer tomography
experiments,20 and is a feature that static models struggle to represent correctly. Therefore, the lower bundle strength
predicted with including dynamic effects appear to be the result of the higher stress concentrations and easier damage
localization around clusters of broken fibres introduced by the dynamic effects.

B. Fracture mechanics
When a fracture mechanics failure criterion is considered, the predicted bundle strength decreases significantly

(Figure 6a). Furthermore, lower values of λfm changes the overall size effects: strength presents a maximum for
medium-size bundles (under 100 fibres) and then decreases with bundle size. The bundle variability is not affected by
fracture mechanics.

Critical cluster sizes predicted by model C are much smaller than the maximum cluster sizes given by models A/B
and appear to reach an horizontal asymptote, as opposed to the continuous growth shown by the models without fracture
mechanics (Figure 6b). Although direct comparison with experimental results is not possible at this point, this result is
in line with experimental evidence, which has not reported clusters greater than 14 fibres, even for large bundles.6,20
Other models in the literature which do not consider fracture mechanics also tend to severely overestimate the critical
cluster size.6

C. Validation against micro-composites
The models correlate very well with the experimental data for matrix (I) (low modulus) and the predicted mean

strengths do not deviate more than 2% (Figure 7a). The correlation with St-Pierre et al. FE data13 is also excellent. For
matrix (II) (high modulus), predictions appear to overestimate slightly the experimental strength, but they are still very
close to FE data (Figure 7b). It should be noted that Netravali et al.32 have reported the occurrence of debonding at the
fibre matrix interface during single fibre fragmentation tests with matrix (II), while no debonding was observed for the
flexible matrix (I). Debonding at the fibre matrix interface results in a longer recovery length and this may lower the
bundle strength, so this consideration may explain why the simulations tend to overestimate the experimental results.

D. Validation against macro-composites
It is observed in Figure (Figure 7c) that both models A and B overestimate the strength of large bundles. Furthermore,

the size effect (decrease in strength with the number of fibres in the bundle) observed in the range of the experiments
cannot be reproduced by any of the two models, which both exhibit a positive trend for the bundle strength. These results
suggest that the strength of large composite bundles, and in particular the size effects, cannot be correctly predicted
considering only strength of materials as the failure theory (even in the case of dynamic stress concentration).

In contrast, predictions for model C for the values of λfm studied are in the same range of the experimental results.
Additionally, the reduction in the predicted mean strength with the bundle size is compatible with the trend of the
experimental data. Note that, although predictions depend on λfm, treated as a free parameter of the model at this point,
the model predicts the correct size effect for all the values considered. This suggest that failure in large composite
bundles may be driven by fracture mechanics.

V. Conclusion
A family of semi-analytical fibre bundle models was developed to efficiently simulate the longitudinal tensile failure

of large composite bundles. A field superposition method was implemented to calculate the stress concentrations and
capture the effect of clusters of broken fibres in the shear-lag recovery mechanism. A bundle-size dependent variable
number of Monte Carlo simulations was implemented, resulting in a great improvement of the computational efficiency
and allowing the direct simulation of bundle sizes up to thousands of fibres.
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The models include both strength of materials and fracture mechanics as bundle failure theories. Additionally,
a formulation to investigate the effect of dynamic stress concentrations on the failure process was included. To the
knowledge of the authors, it is the first time in the literature that dynamic effects and fracture mechanics are investigated
through direct simulation in a fibre bundle model.

All the models of the family exhibit a generally good correlation with experimental strength distributions for
micro-bundles. However, when considering experimental data for large bundles, results are severely overestimated
if only strength of materials driven failure is considered, even considering dynamic effects that shows a maximum
reduction possible of about 10% in the predicted bundle strength. The addition of the fracture mechanics failure criterion
allows the prediction of lower values with a negative trend for the strength of large bundles, in addition to a smaller
cluster size which stays rather constant even for large bundles. Both considerations are in agreement with experimental
evidence and suggest that fracture mechanics may be the physical mechanism necessary to reproduce the size effect in
large composite bundles. This is arguably the most important outcome of this work.

Appendix
A. Assignation of stochastic strength and scaling

The Weibull distribution33 is widely adopted in the literature to model the stochastic variability of the strength in
composite fibres.11,13,14,16,34–36 For a single fibre with reference length lr, the Weibull strength distribution is defined by
the shape parameter mlr and the scale parameter X lr

0 . The failure probability F of a fibre with length lr under a remote
stress σ∞ is:

F(σ∞) = 1 − S(σ∞) = 1 − exp

(
−σ∞

X lr
0

)mlr

(A1)

where S(σ∞) is the survival probability under the remote stress σ∞.
The Weakest Link Theory,5,37 which states that a chain of n elements survives under a remote stress σ∞ only if each

of the elements survives under σ∞, is used to scale the Weibull parameters from the reference length lr to a length l:

ml = mlr ; X l
0 = X lr

0 ·
(

lr
l

)1/mlr

(A2)

We used this formulation to assign a random strength X i j to each fibre element of length lel in the bundle. Combining
Eqs.(A1-A2) and assigning a random survival probability with a random number Si j :

X i j = X lr
0 ·

(
− lr

lel
· ln Si j

)1/mlr

(A3)

The same formulation is used to scale the results from a simulation bundle length ls to another bundle length lb.
Being X1

b ≤ X2
b ≤ ... ≤ XN

b ... ≤ XNMC
b the predicted bundle strengths corresponding to each one of the NMC Monte

Carlo simulations for a bundle of length ls, the cumulative distribution function for the bundle strength is obtained
assigning a bundle failure probability Fb to each of the NMC Monte Carlo strengths:

FN
b = (N − 1)/NMC (A4)

This distribution is fitted using a Weibull distribution with parameters mls and X ls
0 that correspond to its mean

strength X ls
b and standard deviation SDls

b . Then, the parameters are scaled to lb following Eq.(A2).
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