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This work describes the automatic balancing and inertia identification system for a three 

degrees of freedom CubeSat attitude simulator testbed. For a reliable check of the attitude 

control algorithms, the on-orbit environment has to be simulated within the testbed. The 

external disturbances acting on the satellite mockup shall be minimized, the most significant 

one being the gravity torque. An automatic balancing procedure can largely reduce the time 

necessary for tuning the platform and minimizing the residual disturbance torque. The 

automatic balancing system adopted in this work employs three sliding masses independently 

actuated by three electric motors. A control algorithm automatically adjusts the location of the 

sliding masses to eliminate the unknown offset between the center of rotation and the center 

of mass. Inertia parameters are estimated through the balancing procedure by collecting free 

oscillating platform data. No actuators except the motors are required. Experimental results 

show the effectiveness of the implemented approach in achieving a good disturbance 

reduction. 

INTRODUCTION 

 

The growing interest for the development of highly capable nanosatellites for a wide range of missions demands for 

careful performance assessment of the platform through extensive ground testing. In particular, testing of the Attitude 

Determination and Control Subsystem is of paramount importance. To simulate the on-orbit environment, a disturbance-

free rotational dynamic shall be created. A class of simulators developed specifically for CubeSats that meets such 

requirements are based on air bearings [4][5][6], as they offer nearly torque-free motion. The main disturbance torque 

affecting such kind of test benches is the one due to gravity. To reduce the gravitational torque, the distance between the 

center of mass and the center of rotation must be minimized. 

The first approach used to reduce the gravitational torque was manual balancing, based on inspecting the spacecraft 

simulator pendulum motion, as described in [7]. The balance masses are moved so as to increase the pendulum period. 

This method requires multiple trials and is limited in real applications because of the rotational travel constraints of the 

spherical air bearing. Other mass balancing systems developed before [8] were based on input-output data processing of 

two types: based on external control moment gyros used to track the angular momentum or least-square identification 

based type. Most accurate results were achieved through least-squares based techniques. The overdetermined linear 

system of sampled data, based on inverse dynamic model or energy model, is solved. This is a dynamic procedure where 

a known input trajectory of control torques is fed to the system. From information obtained about the system through the 

dynamic or energy system model it is possible to determine the positions of three proof masses to balance the system. 

The limitation of least-squares-based techniques is that the estimation and compensation process must be repeated several 

times before accurate balancing is achieved. The drawback of the control moment gyros is the need of the external known 

input – the non-modeled disturbances must be neglected.  

An alternative to the unknown parameters estimation is to balance the system through a feedback loop. For two axis 

balancing procedure this can be done by a PID based control or by more complex schemes as the one presented in [9], 

where the system drives the balance masses to compensate the imbalance coming from the difference in total impulse 

exerted by the actuator during limit cycle. 

The presented work combines automatic balancing control law and inertia identification of the system to eliminate the 

disturbance due to the gravitational torque. The control law and identification algorithm are implemented and tested on a 

system under development at University of Bologna. Inspired by the work in [1], the proposed automatic balancing system 

uses three sliding masses controlled independently. The control algorithm automatically adjusts the location of the sliding 

masses to eliminate the unknown offset between the center of rotation and center of mass. 

To this end, a two-step procedure is employed: the first step is devoted to in-plane balancing, the second one to the joint 

identification of the vertical unbalance plus the inertia properties. Since the torque that can be generated by the balance 

masses is physically confined in the direction perpendicular to the gravity field, the disturbance torque acting on the same 

subspace can be compensated by a feedback law. The compensation is achieved through a nonlinear attitude control law 

[2] modified to match our constrained system. In the target state subspace, the platform is spinning about the gravity 

vector and the attitude is forced to have the x-y body frame plane perpendicular to the gravity vector. Attitude quaternions 

and angular velocity values, which are required by the controller, are made available by an IMU mounted on the platform. 
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Once the steady state is reached, the x-y components of the unbalance vector can be computed. The feedback law is 

proved to be robust against disturbances and parameter uncertainties through simulations. Once the offset in the two 

directions perpendicular to the gravity field are known, the last component can be estimated through a least squares filter. 

For a straightforward least squares formulation, actuators are needed. For example, for identification and balancing of an 

800 kg satellite in [8], reaction wheels are used. Different formulation can be found in [10] [11]. A survey on earlier 

identification techniques is done in [12]. 

In case a reference control input cannot be provided, previous techniques are not more applicable. Few identification 

techniques for inertia parameters estimation specific for the frictionless suspension of the testbed platform with lack of 

external actuation were developed. A possible solution for a well modeled plant is the Kalman filtering. In [3] a least 

square formulation was developed to estimate the CM to CR vector together with the inertia parameters for a passive 

system. In this case the identification is based on the sampling of free oscillating rotations.  

The filter used in this work is a modification of the one documented in [3]. By sampling the free oscillating rotations, the 

six elements of the inertia matrix and the third offset component can be retrieved. 

 

PLATFORM KINEMATICS AND DYNAMICS 

 

In the modelled system the center of rotation is fixed to a 

point in the inertial coordinate system. The spacecraft three-

axis simulator testbed structure can rotate freely but cannot 

translate.  

The platform is approximated to a rigid body with moving 

point masses. The balance masses can move only along 

corresponding unit axis, perfectly aligned and parallel with 

the simulator body reference frame axes. This assumption is 

possible since the orientation of the simulator reference 

frame can be chosen freely (Fig. 1).  

The rotational kinematics of a body with fixed center of 

rotation can be described using quaternions. Let’s define 

absolute angular velocity 𝜔 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]
𝑇
 and attitude 

describing quaternions vector q = [𝑞1 𝑞2 𝑞3 𝑞4 ]
𝑇. The 

kinematics are described by (1).  

 [

𝑞̇1

𝑞̇2

𝑞̇3

𝑞̇4

] =
1

2

[
 
 
 
 

0 𝜔𝑧 −𝜔𝑦 𝜔𝑥

−𝜔𝑧 0 𝜔𝑥 𝜔𝑦

𝜔𝑦 −𝜔𝑥 0 𝜔𝑧

−𝜔𝑥 −𝜔𝑦 −𝜔𝑧 0 ]
 
 
 
 

[

𝑞1

𝑞2

𝑞3
𝑞4

]  (1) 

The attitude of the body frame with respect inertial frame can be described through the quaternions (2). 

𝑅𝑖
𝑏 = [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 − 𝑞4𝑞3) 2(𝑞1𝑞3 + 𝑞4𝑞2)

2(𝑞1𝑞2 + 𝑞4𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞4𝑞1)

2(𝑞1𝑞3 − 𝑞4𝑞2) 2(𝑞1𝑞3 + 𝑞4𝑞1) 1 − 2(𝑞1
2 + 𝑞2

2)

]                                           (2) 

Following the system model presented in [9], we assume the three balance masses move along some unit vector 

directions [𝑢1 𝑢2 𝑢3]
𝑇, which are parallel and aligned to the axes of the body reference frame [𝑥𝑏  𝑦𝑏  𝑧𝑏]𝑇.  

As long as the net displacement of the balance masses can create a three-dimensional mass shift, the vector directions 
[𝑢1 𝑢2 𝑢3]

𝑇 can be chosen freely, but the previous assumptions will simplify our model. The actual mass displacement 

directions can be mapped by a change of coordinate to align them with the chosen reference frame. The vectors ρ1, ρ2, 

and ρ3 are the origins of the balance masses displacement and d1, d2, and d3 the vectors describe the masses displacement 

with respect the zero locations. The mass positions with respect the simulator origin 𝑂𝐶𝑅 are described by (3). 

𝑟𝑖 = 𝜌𝑖 + 𝑑𝑖𝑢𝑖         ( 𝑖 = 1⋯3)                                                             (3) 

Assume to know the total mass of the simulator including balance masses sum 𝑚𝑏 = 𝑚1 + 𝑚2 + 𝑚3. 𝑟0 is the center of 

gravity without balance masses. The CM to CR offset vector 𝑟𝑜𝑓𝑓 with respect the body reference frame is computed by 

(4). 

𝑟𝑜𝑓𝑓 =
1

𝑚
∫ 𝑟

.

𝐵
d𝑚 =

1

𝑚
[(𝑚 − 𝑚𝐵)𝑟0 + ∑ 𝑚𝑖𝑟𝑖

3
𝑖=1 ]                                         (4) 

Following new mass displacement, the offset vector changes as in (5).  

𝑟𝑜𝑓𝑓′ =
1

𝑚
[(𝑚 − 𝑚𝐵)𝑟0 + ∑ 𝑚𝑖

3
𝑖=1 (𝜌𝑖 + (𝑑𝑖 + ∆𝑑𝑖)𝑢𝑖)]                                      (5) 

The inertia matrix is composed of two components: the estimated simulator inertia matrix without balance masses 𝐽𝑠 and 

the contribution due to the balance masses (6). 

𝐽 = 𝐽𝑆 + ∑ (−𝑚𝑖[𝑟𝑖 ×][𝑟𝑖 ×])3
𝑖=1                                                                 (6) 

The updated inertia matrix considering masses new displacement can be computed by (7). 

Fig. 1. Body reference frame. 

 



𝐽′ = 𝐽 − ∑ (−𝑚𝑖[𝑟𝑖 ×][𝑟𝑖 ×]) + ∑ (−𝑚𝑖[𝑟′𝑖 ×][𝑟′𝑖 ×])3
𝑖=1

3
𝑖=1                                    (7) 

Define the total moment of inertia Γ, 𝑚𝑆 𝐶⁄  the total simulator mass, 𝑟𝑜𝑓𝑓 constant vector from the center of rotation to 

the center of mass, 𝑔 the gravitational acceleration vector, the rotational dynamics of the simulator in the inertial reference 

frame with input torque 𝜏𝑟 are given by (8). 

Γ̇ + 𝜔 × Γ = 𝑟𝑜𝑓𝑓 × 𝑚𝑆 𝐶⁄ 𝑔𝑏 + 𝜏𝑟                                                           (8) 

The gravitational acceleration vector 𝑔𝑏 is expressed in the body reference frame (9). 

𝑔𝑏 = 𝑅𝑖
𝑏𝑔𝑖                                                                               (9) 

The total momentum Γ is defined in (10). 

Γ = 𝐽𝜔 + ∑ 𝑅𝑖 × 𝑚𝑖𝑅̇𝑖
3
𝑖=1                                                              (10) 

The inertia matrix is time independent, the total momentum is 𝐽𝜔 so the system dynamic equations are described by (11). 

 𝐽𝜔 ̇ + 𝜔 × 𝐽𝜔 = 𝑟𝑜𝑓𝑓 × 𝑚𝑆 𝐶⁄ 𝑔𝑏 + 𝜏𝑟                                                  (11) 

The only control torque provided is due to the balancing masses (12). 

𝜏𝑟 = 𝑚𝑝 ∑ 𝑟𝑖𝑖 × 𝑔𝑏      for 𝑖 = 𝑥, 𝑦, 𝑧                                                    (12) 

The control torque is constrained to lie in the direction normal to both the masses position vector and to the gravitational 

field direction. The controller design account for a single mass driven by a three-dimensional displacement vector, 

equivalent to three independent masses. The balancing masses are supposed to be equal. 

After the control law is designed, the control mass displacement components 𝑟𝑖 must be computed. It is easy to verify [9] 

that a displacement vector computed by: 

𝑟 =
𝑔𝑏×𝜏𝑟

‖𝑔𝑏‖
2
𝑚𝑝

 𝑧                                                      (13) 

provides the desired control torque 𝜏𝑟. The compensation of two components of the offset vector can be done by an 

attitude feedback control law projected on the subspace orthogonal to the gravity direction, as shown in the following 

sections. 

 

FULL ATTITUDE CONTROL 

 

The offset vector from the center of rotation to the center of mass 𝑟𝑜𝑓𝑓 is a three dimensional vector. An automatic 

balancing by a feedback nonlinear control law can be performed for two components out of three. The proposed control 

law is based on a projection of the full attitude control law with disturbance compensation developed in [2], which will 

be briefly recalled here for clarity. Let’s assume the target attitude is described by 𝑞𝑟𝑒𝑓  = [ 0 0 0 1 ]𝑇 quaternion, 

equivalent to 𝑧𝑏 and 𝑔𝑏 aligned. The control law goal is to drive 𝑞𝑒  = [𝑞1 𝑞2 𝑞3 ]
𝑇 vector to zero asymptotically. 

Let’s rewrite the dynamic equations in a matrix form: 

[𝐽]𝜔̇ = −[𝜔̃][𝐽]𝜔 + 𝜏𝑟 + 𝐿 + ∆𝐿                                                     (14) 

The 𝐿 and ∆𝐿 are known and unkown distrubances respectivly. Assume the external disturbance is completely unknown 

and bounded. To compensate this term, an augmented state 𝑧(𝑡)  is added to our control problem, designed as in (15).  

𝑧(𝑡) = ∫ 𝐾𝑞4𝑞𝑒𝑑𝑡
𝑡

0
+ [𝐽]𝜔                                                      (15) 

The augmented state of our system is 𝑥 = [𝑞𝑒 𝜔 𝑧]𝑇 . Note that if the control law force 𝑧(𝑡) to remain bound, then 𝑞𝑒 is 

driven to zero by design. Our system has to be asymptotically stabilized at the origin. The Lyapunov function used to 

design the control law is the following: 

𝑉(𝑞𝑒 , 𝜔, 𝑧) =
1

2
𝜔𝑇[𝐽]𝜔 + 𝐾𝑞𝑒

𝑇𝑞𝑒 +
1

2
𝑧𝑇𝐾𝐼𝑧                                        (16) 

The time derivative of the Lyapunov function along the motion of the system leads to (17) 

𝑉̇(𝑞𝑒 , 𝜔, 𝑧) = (𝜔 + 𝐾𝐼𝑧)
𝑇(𝐾𝑞4𝑞𝑒 + [𝐽]𝜔̇)                                         (17) 

The time derivate of the quaternion error vector is provided in (18) 

𝑞̇𝑒 =
1

2
(𝑞4[𝐼3𝑥3] + [𝑞̃𝑒])𝜔                                                      (18) 

Following the inverse Lyapunov theorem, Lyapunov function derivative has to be negative definite. The goal is to design 

the input torque so as the Lyapunov function derivative assume the following form: 

𝑉̇(𝑞𝑒 , 𝜔, 𝑧) = −(𝜔 + 𝐾𝐼𝑧)
𝑇𝑃(𝜔 + 𝐾𝐼𝑧)                                              (19) 

Equating the (16) and (19): 

𝑉̇(𝑞𝑒 , 𝜔, 𝑧) = −(𝜔 + 𝐾𝐼𝑧)
𝑇[𝑃](𝜔 + 𝐾𝐼𝑧) = (𝜔 + 𝐾𝐼𝑧)

𝑇(𝐾𝑞4𝑞𝑒 + [𝐽]𝜔̇)                    (20) 

the desired closed loop dynamic is given by (21). 

[𝐽]𝜔̇ + 𝐾𝑞4𝑞𝑒 + [𝑃]𝜔 + [𝑃]𝐾𝐼𝑧 = 0                                               (21) 

The following control torque will stabilize our system: 

𝜏𝑟 = −𝐾𝑞4𝑞𝑒 − [𝑃]𝜔 − [𝑃]𝐾𝐼𝑧 + [𝜔̃]𝐽𝜔                                           (22) 



Since Lyapunov function is negative semidefinite, the state is only Lyapunov stable; further (𝜔 + 𝐾𝐼𝑧) goes to zero. 

Higher order derivatives shall be inspected to check for asymptotic stability, which is indeed ensured, as shown in [2]. 

For a non-zero ∆𝐿 the first derivative of the Lyapunov function is not negative semidefinite and the stability of 𝑧 and 𝑞𝑒 

are not guaranteed: 

𝑉̇(𝑞𝑒 , 𝜔, 𝑧) = −(𝜔 + 𝐾𝐼𝑧)
𝑇(𝑃(𝜔 + 𝑧𝑇𝐾𝐼) − ∆𝐿)                                    (23) 

However, for a bounded ∆𝐿, 𝜔 and 𝑧 cannot grow unbounded. For sufficiently large values of 𝜔 and z, the term  

−(𝜔 + 𝐾𝐼𝑧)
𝑇𝑃(𝜔 + 𝑧𝑇𝐾𝐼)                                                      (24) 

will dominate and the Lyapunov rate will become negative. By definition, 𝑧 converges to a finite value and both 𝜔̇ 𝑎𝑛𝑑 𝑞𝑒 

must decay to zero. 𝜔 converges to zero due to the kinematic relationship. 

 

CONTROL LAW PROJECTION 

 

The control law presented in the previous section needs to be modified since our system is underactuated. Partial 

quaternion error vector compensation is made possible by a control law projection. 

The angular velocity 𝜔 can be divided in two components: a projection along 𝑔𝑏  denoted as 𝜔𝑔 and the complementary 

component 𝜔𝑝  representing the angular velocity perpendicular to the Earth gravitational field (26-27). The projection 

operator used is defined as a function of the vector 𝑔𝑏 (25). 

𝑃𝑝(𝑞) = [𝐼 −
𝑔𝑏(𝑔𝑏)

𝑇

∥𝑔𝑏∥2 ]                                                                     (25) 

𝜔𝑝 = 𝑃𝑝(𝑞)𝜔                                                                            (26) 

𝜔 = 𝜔𝑔 + 𝜔𝑝,    𝜔𝑔
𝑇𝜔𝑝 = 0,    (𝑔𝑏)𝑇𝜔𝑝 = 0                                                 (27) 

Similarly, components of the quaternion error vector can be defined. Let’s define the quaternion representation of the 

attitude error vector projection on the plane perpendicular to the gravity as 𝑞𝑒𝑝 and the complementary component as 𝑞𝑒𝑔 

(28-29). 

𝑞𝑒𝑝 = 𝑃𝑝(𝑞)𝑞𝑒                                                                         (28) 

𝑞𝑒 = 𝑞𝑒𝑝 + 𝑞𝑒𝑔,    𝑞𝑒𝑔
𝑇𝑞𝑒𝑝 = 0                                                            (29) 

Our target is to stabilize the platform so as 𝑧𝑏 axis and 𝑧𝑖 axes are aligned. In this condition the only component of the 

offset vector not cancelled by the balancing masses is on the 𝑧𝑏 axis. Driving 𝑞𝑒𝑝 and 𝜔𝑝  to zero will lead our platform 

to the desired orientation. Let us consider a slightly modified with respect (16) Lyapunov function: 

𝑉(𝜔, 𝑞𝑒𝑝, 𝑧𝑝) =
1

2
𝜔𝑇[𝐽]𝜔 + 𝐾𝑞𝑒𝑝

𝑇𝑞𝑒𝑝 +
1

2
𝑧𝑝

𝑇𝐾𝐼𝑧𝑝                                       (30) 

where the augmented state vector is modified so as to compensate the projected component only: 

𝑧𝑝(𝑡) = 𝑃𝑝(𝑞)𝑧(𝑡)                                                              (31) 

The dynamics of the 𝑞𝑒𝑝 depends only on 𝜔𝑝 (32). 

𝑞̇𝑒𝑝 = 𝑞̇𝑒 − (𝑞̇𝑒 ⋅ 𝑔̂)𝑔̂ =
1

2
(𝑞4[𝐼3𝑥3] + [𝑞̃𝑒])𝑃𝑝(𝑞)𝜔 =

1

2
(𝑞4[𝐼3𝑥3] + [𝑞̃𝑒])𝜔𝑃             (32) 

The derivative of the quaternion error vector projection is computed in (33).: 

𝑑𝐾𝑞𝑒𝑝
𝑇𝑞𝑒𝑝

𝑑𝑞
= 2𝐾

1

2
(𝑞4𝜔𝑝 + [𝑞̃𝑒]𝜔𝑝)

𝑇
𝑞𝑒𝑝 = 𝐾(𝑞4𝜔𝑝 + [𝑞̃𝑒]𝜔𝑝)

𝑇
(𝑞𝑒 − 𝑞𝑒𝑔) = 

= 𝐾𝑞4𝜔𝑝
𝑇(𝑞𝑒𝑝 + 𝑞𝑒𝑔 − 𝑞𝑒𝑔) = 𝐾𝑞4𝜔𝑝

𝑇𝑞𝑒𝑝                                          (33) 

If we assume no known external torques are present, then the control law (34) 

𝜏𝑟 = −𝐾𝑞4𝑞𝑒𝑝 − [𝑃]𝜔𝑝 − [𝑃]𝐾𝐼𝑧𝑝+𝑃𝑝(𝑞)([𝜔̃][𝐽]𝜔)                              (34) 

leads to following Lyapunov function time derivative: 

𝑉̇(𝜔, 𝑞𝑒𝑝, 𝑧𝑝) = (𝜔 + 𝐾𝐼𝑧𝑝)
𝑇(𝐾𝑞4𝑞𝑒𝑝 + [𝐽]𝜔̇) = (𝜔 + 𝐾𝐼𝑧𝑝)

𝑇
(−𝑃𝜔𝑝 − 𝑃𝐾𝐼𝑧𝑝 − [𝜔̃]𝐽𝜔+𝑃𝑝(𝑞)([𝜔̃][𝐽]𝜔)) 

= −(𝜔𝑝 + 𝐾𝐼𝑧𝑝)
𝑇
[𝑃](𝜔𝑝 + 𝐾𝐼𝑧𝑝) + (𝜔 + 𝐾𝐼𝑧𝑝)

𝑇
(−[𝜔̃]𝐼𝜔+𝑃𝑝(𝑞)([𝜔̃][𝐽]𝜔)) 

≈ −(𝜔𝑝 + 𝐾𝐼𝑧𝑝)
𝑇
[𝑃](𝜔𝑝 + 𝐾𝐼𝑧𝑝)                                                  (35) 

Inertia coupling term is considered to be negligible with respect the main negative defined term since it’s multiplied by a 

quadratic term dependent on the angular speed, and the angular speed in the balancing phase is small:  

(𝜔 + 𝐾𝐼𝑧𝑝)
𝑇
(−[𝜔̃]𝐽𝜔+𝑃𝑝(𝑞)([𝐽]𝜔)) = (𝜔 + 𝐾𝐼𝑧𝑝)

𝑇
(([𝐼3𝑥3] − 𝑃𝑝(𝑞)) ([𝜔̃][𝐽]𝜔)) ≈ 0          (36) 

Since derivative of the Lyapunov function is negative semidefinite the closed-loop control system is Lyapunov stable. 

Following the same reasoning done for the fully actuated system, analyzing higher order derivatives it is possible to state 

that lim𝑡→∞ 𝑞𝑒𝑝(𝑡) = 0. The system will converge to the largest invariant set Ω  contained in the space defined by the 

Lyapunov function. Since the Lyapunov function is stable, on 𝑉̇ = 0 set it’s possible to state: 



lim
𝑡→∞

(𝑃(𝜔𝑝 + 𝑧𝑝
𝑇𝐾𝐼) − ∆𝐿) = 0                                                  (37) 

And since 𝜔𝑝 is zero: 

lim
𝑡→∞

𝑧𝑝 = 𝑃−1𝐾𝐼
−1∆𝐿                                                       (38) 

The internal feedback term will compensate the unknown external disturbance. 

 

SYSTEM PARAMETERS IDENTIFICATION 

 

After the balancing on the x-y plane is done, the offset vector 𝑟𝑜𝑓𝑓 is partially known. The last component of the vector 

can be estimated. The employed identification technique needs no external actuation and is based on the sampling of free 

oscillating rotations, according to the method presented in [3]. The identification problem goal is to write the system 

equations in a linear form, so that a system of equations necessary for a least squares identification can be formulated 

(39).  

𝛷 𝑥 =  𝑏(𝜏𝑒𝑥𝑡)                                                                        (39) 

In (39) 𝜏𝑒𝑥𝑡 is the external torque, 𝛷 is the observation matrix, and 𝑥 is the vector of the dynamic parameters to be 

identified. In the case of a system with no actuation, the right-hand side of (39) is always equal to zero, which would 

require solving equations for the null-space of the observation matrix. Such a drawback can be avoided if the dynamic 

parameters are computed with respect a freely chosen point O attached to the body, different from both CM and CR. This 

way, the offset vector  𝑟𝑜𝑓𝑓 is expressed as the sum: 

 𝑟𝑜𝑓𝑓 =  𝑟 + 𝜌𝑜                                                                     (40) 

Then by applying the Huygens-Steiner theorem to express the inertia 𝐽𝐶𝑅 as a function of 𝐽𝑜 and 𝑟, the total angular 

momentum of the body with respect to the center of rotation can be formulated as: 

𝐽𝐶𝑅𝜔 = 𝐽𝑜𝜔 + 𝐶(𝑟)𝜔 + 𝑚𝐵(𝜔, 𝑟)𝜌𝑜                                                           (41) 

where 𝐵(𝜔, 𝑟) is: 

𝐵(𝜔, 𝑟) = [

−𝑟2𝜔2 − 𝑟3𝜔3 2𝑟2𝜔1 − 𝑟1𝜔2 2𝑟3𝜔1 − 𝑟1𝜔3

2𝑟1𝜔2 − 𝑟2𝜔1 −𝑟1𝜔1 − 𝑟3𝜔3 2𝑟3𝜔2 − 𝑟2𝜔3

2𝑟1𝜔3 − 𝑟3𝜔1 2𝑟2𝜔3 − 𝑟3𝜔2 −𝑟1𝜔1 − 𝑟2𝜔2

]                                     (42) 

 

and: 

 𝐶(𝑟) = 𝑚(𝑟𝑇𝑟[𝐼3𝑥3] − 𝑟𝑟𝑇)                                                                 (43) 

If one defines the vector of unknown parameters to be estimated as: [𝑗𝑜 𝑟𝑜]𝑇 = [𝐽𝑥𝑥
𝑜  𝐽𝑦𝑦

𝑜  𝐽𝑧𝑧
𝑜  𝐽𝑥𝑦

𝑜  𝐽𝑥𝑧
𝑜  𝐽𝑦𝑧

𝑜  𝑟𝑜]
𝑇
 the time 

derivative of the angular momentum is defined as in (44). 

𝐽𝐶𝑅𝜔̇ = 𝛺(𝜔̇ )𝑗𝑜  +  𝑚𝐵(𝜔̇ , 𝑟)𝜌𝑜 + 𝐶(𝑟)𝜔                                             (44) 

 

Collecting all dynamic parameters on the left-hand side of the dynamic equation, the (44) is written in the following 

matrix form: 

[𝛺(𝜔̇ ) + [𝜔̃]𝛺(𝜔 )|𝑚(𝐵(𝜔̇ , 𝑟) + [𝜔̃]𝐵(𝜔, 𝑟) + [𝑔̃])] [
𝑗𝑜

𝑟𝑜] = −𝑚[𝑔̃]𝑟 − [𝜔̃]𝐶(𝑟)𝜔 − 𝐶(𝑟)𝜔̇      (45) 

where 𝛺(𝜔̇ ) is defined as in (46) 

𝛺(𝜔̇ ) = [

𝜔1̇ 0 0
0 𝜔̇2 0
0 0 𝜔̇3

     

𝜔2̇ 𝜔̇3 0
𝜔̇1 0 𝜔̇3

0 𝜔̇1 𝜔̇2

]                                                (46) 

The formulation as originally presented in [3], however requires the knowledge of the angular accelerations. Angular 

acceleration data computed from noisy angular speed samples could be very inaccurate. By integrating (45) a different 

formulation could be obtained, where angular accelerations are not more needed: 

[𝛺(𝜔 ) + ∫[𝜔̃]𝛺(𝜔 ) |𝑚(𝐵(𝜔, 𝑟) + ∫[𝜔̃]𝐵(𝜔, 𝑟) + ∫[𝑔̃])] [
𝑗𝑜

𝑟𝑜] = 

−∫𝑚[𝑔̃]𝑟 − ∫[𝜔̃]𝐶(𝑟)𝜔 − 𝐶(𝑟)(𝜔 − 𝜔0)            (47) 

 

An efficient Least Square estimation needs good initial conditions to obtain best results. All three components of the 

angular speed have to be excited. Experiment time must be limited so as nonlinearities due to friction will not affect the 

estimation process. The data sampled from different experiments are merged together for a reliable estimation. 

In the defined formulation there are more equations than unknowns, the problem is solved computing the LS solution of: 

 𝑥 =  𝛷+𝑏(𝜏𝑒𝑥𝑡)                                                                         (48) 

where Φ+ is the pseudo-inverse of the observation matrix. This LS solution is an estimation of the vector of parameters 𝑥. 

The Huygens-Steiner theorem can finally be applied to find the inertia matrix of the body with respect the CM: 



𝐽𝐶𝐺  =  𝐽𝑜  − 𝑚(𝜌𝑜𝑇 𝜌𝑜 [𝐼3𝑥3] − 𝜌𝑜 𝜌𝑜𝑇)                                                 (49) 

The last offset vector is computed by (50). 

 𝑟𝑜𝑓𝑓 = 𝑟𝑧  +  𝜌𝑜𝑧                                                                     (50) 

 

SIMULATION RESULTS 

 

The balancing procedure efficiency was checked through the simulations using a model developed in Matlab Simulink. 

The results presented here are based on data estimated from the experimental data.  

Since in (34) some terms of the control law foresee the knowledge of the inertia matrix, in the simulations and experiments 

a simplified version of the control law was used (51) 

𝜏𝑟 = −𝐾𝑞4𝑞𝑒𝑝 − [𝑃]𝜔𝑝 − [𝑃]𝐾𝐼𝑧𝑝                                                        (51) 

The neglected term 𝑃𝑝(𝑞)([𝜔̃][𝐽]𝜔) depends on the unknown inertia matrix. Since in affects only the transient and not 

the error at steady state it can be neglected. By comparing the results of simulations obtained by using full and reduced 

control laws, no stability of the reduced control is checked. In the following the reduced control law is always used. 

Total mass of the platform used for the simulations is 6.3 𝑘𝑔. The masses used for the balancing are 𝑚𝑥 = 𝑚𝑦 = 𝑚𝑧 =

0.465 𝑘𝑔.  The inertia matrix used is the following: 

 

JCR = [
0.0241 −0.001 0
−0.001 0.0332 −0.004

0 −0.004 0.0363
] kg/m2 

       

The initial angular speed used for the plane balancing simulation is 𝜔 = [−0.307   0.189   − 1.500] rad/s. The sampling 

time is 0.05 𝑠, which was found to be optimal based on our hardware. 

The behavior of the vector of balancing masses positions is shown in the Fig. 2. The steady state is reached after 300 

seconds. Following the defined control scheme, the only angular velocity component different from zero is aligned with 

𝑧𝑖 axis of the inertial reference frame. The 𝑔𝑏𝑥 and 𝑔𝑏𝑦 components converge to zero in steady state. This behavior is in 

accordance with the control law analysis.  The convergence of the estimated parameters is shown in the Fig. 3. It is 

possible to see that the only component last to be compensated after the transient is along the 𝑧𝑏 axis, which is aligned 

with the 𝑧𝑖 axis at the steady state. 

The residual error of 𝑥 and 𝑦 components of the unbalance vector after 300 seconds is in the order of 10−7𝑚, less than 

the residual disturbance expected by our hardware. 

The estimation of the unknown unbalance vector component and inertia matrix is done based on data collected from a 

200 seconds long simulation of free oscillation of the platform with sampling time of 0.05 𝑠. The experiment time has to 

be limited so as the friction do not affect the collected data. Friction due to the air bearing, measurement noise on angular 

speed and attitude are simulated based on the datasheets of the hardware. The noisy angular acceleration computed from 

the angular speed measurements data is too inaccurate to be used directly in the estimation process. To verify the 

efficiency of estimation algorithm, the results of estimations based on the ideal angular acceleration, available in the 

simulation, and data estimated by the integration of the system equation are compared. 

The requirement on the 𝜌𝑜 vector is to be different from zero, but for a reliable estimation the magnitude should in order 

of the offset vector. In the simulations, the 𝜌𝑜 vector is chosen to be half of the unbalance vector. The estimated data are 

computed with respect the 𝑅𝐵  reference frame. 

The true vector of parameters to be estimated is:  

[
𝑗𝑜

𝑟𝑜] = 𝑥𝑡𝑟𝑢𝑒 = [0.0241 0.0333 0.0364 − 0.0011 0.0009 − 0.0040 0.0004 0.0007 − 0.0026]𝑇 

The first two components of the  𝑟𝑜𝑓𝑓 vector, which are known from the plane balancing, are used as constraints in the 

estimation problem.  

From data collected during the simulations, the vector estimated based on real angular acceleration data is: 

𝑥𝑒𝑠𝑡 = [0.0241 0.0342 0.0371 − 0.0012 0.0008 − 0.0041  0.0004  0.0007 − 0.0026]𝑇 

The vector estimated based on the integrated data is the following: 

  𝑥𝑒𝑠𝑡𝑎𝑛 = [0.0242 0.0341 0.0375 − 0.0012 0.0008 − 0.0042  0.0004  0.0007 − 0.0026]𝑇 

As it’s possible to see from the provided data, the difference between the two estimation is negligible. The percentage 

error of the estimated parameter with respect the real data is the following: 

𝑒𝑟𝑟% =   [ −0.4149   − 0.9021   − 1.0220   − 1.0909   1.2222  − 1.5200   0    0   − 0.0769]𝑇 

By iterating the experiments, the estimation error is reduced till no more appreciable variation on estimated parameters 

could be noticed. Due to the simulated source of errors, such as measurement noise, air friction, residual error from the 

first step of the balancing, the estimation error limit was found to be of 2% in the worst case. 

The main source of error is the estimation of products of inertia since their magnitude is small compared with main inertia 

terms.  



 

 

 

To verify the effectiveness of the balancing procedure proposed here, the variation of the kinetic energy of the system is 

analyzed. The total energy of system, described by (52), is constant in case no dissipative forces are applied to our 

system. 

𝐸𝑡𝑜𝑡 = 𝐸𝑘𝑖𝑛(𝑡) + 𝑃𝑔(𝑡) = 𝑐𝑜𝑛𝑠𝑡                                                            (52) 

 

Fig.2 Balancing vector behavior - simulation 

 

Fig. 3 𝑟𝑜𝑓𝑓estimation error - simulation 

 

 



𝑃𝑔(𝑡) is the potential energy of the system and 𝐸𝑘𝑖𝑛(𝑡) is the kinetic energy of the system. The total kinetic energy of 

the proposed model is described by the kinetic rotational energy 

𝐸𝑘𝑖𝑛(𝑡) = 𝜔(𝑡)𝑇𝐽𝜔(𝑡)                                                                      (53) 

If the system is balanced 𝑃𝑔(𝑡) ≈ 0. Therefore, the rotational kinetic energy is constant during the motion (54) 

𝐸𝑡𝑜𝑡 = 𝐸𝑘𝑖𝑛(𝑡) = const                                                                          (54) 

By analyzing the kinetic energy variation in time, the effectiveness of the balancing procedure can be evaluated. Because 

the rotational kinetic energy can be evaluated by the gyroscope measurement, this quantity provides an easy way to 

demonstrate the accuracy of the balance procedure experimentally.  

The variation of kinetic before and after the balancing neglecting the air friction are shown in the Fig. 4 and 5 respectively. 

 

 
Fig. 4 Kinetic energy of unbalanced platform 

 

 

The deviation of the kinetic energy before and after the balancing is 𝜎 =  0.0011 and  𝜎 =  2.7142 ∙ 10−6 respectively, 

meaning a reduction of 99.75 %. In case the air friction is modelled, the kinetic energy has to be evaluated in relatively 

short time. The residual disturbance is due to the error in the estimation process (measurement noisy, sampling delay, air 

friction torque) and the modelled uncertain on motor positions. 

      Fig. 5 Kinetic energy of balanced platform 



EXPERIMENTAL SETUP 

 

The developed algorithm was tested on the facility developed at the Aerospace Faculty of University of Bologna. The 

testbed provides three rotational degree of freedom with guaranteed movements of 360º in Yaw and ±50º in Roll and 

Pitch. 

The balancing system is mounted on the platform. For this reason, all the components have to be carefully chosen to 

comply with the system dimension and weight requirements. The core of our system is made of Arduino components. 

The actuation is done by three stepper motors.  

The on-board controller is an Arduino Due. The IMU is the Arduino 9-Axes Shield unit, based on Bosch BNO055 unit, 

implements a 9-axis Absolute Orientation Sensor. The communication is done through Arduino Wi-Fi shield.  

 

 

Fig. 6 Testbed experimental setup 

 

The balance masses weight influences the maximum offset between the center of rotation and center of mass which is 

possible to compensate. The CubeSat Design specifications (13) limit the possible offset of a CubeSat to ± 20 mm on 

each of three body axes. The balancing mass for each axis can be calculated as 

massbalance(single axis) =
travelbalance

traveloffset
∗ masstotal                                    (55) 

The motor step is 0.01 mm and the maximum disturbance allowed is of 0.001 Nm. Due to the mechanical uncertainty and 

backlash, the motor accuracy considered in the calculation is of 0.02 mm. The steppers motors are of non-captive type. 

Considering the minimum length of the axis inside the motor and space needed to fix the axis to mass itself the available 

travel is 74 mm (± 37 mm). The maximum offset to be compensated by the automatic balancing was chosen to be ± 2 

mm, roughly one tenth of the CubeSat specifications – within this range the balancing has to be done by fixed weights 

and design. 

The balancing mass and axis together weights 465 grams. The total mass of the platform, balance masses and the used 

CubeSat mockup installed is of 6300 grams. The maximum offset which can be compensated can be calculated 

respectively.  

Offset(single axis) =
massbalance

masstotal
∗ traveloffset = 2.7 mm                        (56) 

The designed offset is enough to cover the target specification. 

The actual balance mass positions are computed by a rotation matrix which relates balance masses reference frame and 

the body reference frame. In the first stage a plane balancing is performed. Since the balancing motors are not aligned 

with the IMU axes, the measurement data must be accounted through a rotation matrix. According to the mechanical 

design, 45° rotation around the z axis can be considered for the balance mass displacement computation. All the data 

provided are expressed in the body reference frame, supposed to be coincident with the IMU reference frame. 

 

EXPERIMENTAL RESULTS 

 

The initial angular speed for the plane balancing experiment is of 𝜔 = [0.3676  0.1265 − 1.4835]𝑇 rad/s. The sampling 

frequency is 20 Hz. The steady state is reached after 300 seconds. Due to highly nonlinear motor transfer function and 

the measurement noise affecting the integration, the transient of the balancing vector components differs significantly 

from the simulation data, but the general behavior is similar. The transient is shown in Fig. 7. The system is considered 

balanced once the components of the gravitational vector on x-y plane are in the order of the measurement noise.   



 

Next, a known unbalance vector is introduced. The same sampling frequency is used to collect the data for the least 

squares estimation. The experiments are iterated until the data are consistent with respect the previous identification. The 

inertia matrix found by the estimation is the following (used in the previously provided simulation data): 

JCR = [
0.0241 −0.001 0
−0.001 0.0332 −0.004

0 −0.004 0.0363
]  kg/m2 

The balanced platform oscillation data are sampled to verify the efficiency of the balancing procedure. Data are collected 

through two experiments of 40 seconds each to estimate unbalanced platform kinetic energy and balanced platform kinetic 

energy. The initial angular speed are respectively  𝜔𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =[-0.5171    0.0742   -1.7770] rad/s and 

 𝜔𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑=[0.3076    0.1898   -1.5010] rad/s. Since the modules of the two is close, efficiency of the balancing can be 

evaluated. 

The disturbance moment due to the residual gravitational torque is difficult to be decoupled from the aerodynamic drag 

and air bearing friction. The effectiveness of the balancing is evaluated by computing the kinetic energy standard 

deviation, with 71% reduction, with respect the 99.75% found through the simulations. As expected, the results of the 

experiments are worse than the theoretical results. This difference is double-natured. Neglected disturbances such as 

aerodynamic drag – expected to be low due to the low angular speed module - and some mechanical details not taken in 

account exaggerate the performance computed by the simulations. On the other side, the balancing is not perfect: the first 

stage performance is degraded due the imperfect components estimation and actuation non-linearity, the second stage 

estimation depends heavily on the system parameters knowledge and first stage performance. Moreover, the method used 

to estimate the balancing efficiency, kinetic energy evaluation, is based on the knowledge of the inertia matrix, which is 

itself estimated through the balancing procedure and is affected by the estimation error. 

 

CONCLUSIONS 

 

In this work a two-step procedure to reduce the gravitational torque acting on the experimental platforms based on air 

bearing is presented and experimentally tested. The procedure is based on two stages: in the first stage in-plane balancing 

is done, in the second one vertical unbalance plus the inertia properties are estimated. A nonlinear feedback control law 

used in the first stage guarantees asymptotical stability around the equilibrium point, as showed through the Lyapunov 

function stability analysis. Once the plane balancing is done, two components of the unbalance vector are computed and 

used as constraints in the second stage. 

In the second stage dynamic equations of the system are rewritten such as to formulate linear constrained least squares 

problem. Free oscillating system data are used to estimate the unknown parameters. The information necessary to balance 

the platform is obtained, together with an estimate of the inertia matrix. 

Fig.6 Masses position vector variation during the balancing experiment. 

 



The proposed procedure can be used on low-cost systems, since no expensive actuators for a precise control torque 

reference input are needed. At the same time, the system is robust thanks to a feedback law implementation. 

The entire procedure sketched above was verified both through numerical simulations and experimental tests on the test-

bench using some ad-hoc hardware based on the Arduino microcontroller and other low-cost components. Main 

nonlinearities and disturbances are modelled, and robustness of system with respect thus and the system uncertainties are 

proved through the simulations. Asymptotic stability of the feedback law and efficiency of the estimation are checked. 

Experimental results confirm that adequate performance can be reached, with the automatic balancing being effective in 

reducing the disturbance torque down to the hardware-dependent limit. 

The implemented automatic balancing system is simple from the hardware point of view, since it needs only three actuated 

masses, and proves to be reliable also when low-end COTS components are used to collect and process the data. As such, 

it represents a viable solution for the pre-flight verification of nanosatellite attitude control systems in ground-based 

simulators.  

The balancing performance can be improved. Regarding the first stage, better hardware, especially more precise IMU and 

dedicated motor drives, would guarantee a better plane balancing. More accurate mechanical design, assembling and 

modelling would provide a better initial compensation and better knowledge of the system parameters in the second stage. 
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